These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 18095652)
1. Effect of cell density on osteoblastic differentiation and matrix degradation of biomimetic dense collagen scaffolds. Bitar M; Brown RA; Salih V; Kidane AG; Knowles JC; Nazhat SN Biomacromolecules; 2008 Jan; 9(1):129-35. PubMed ID: 18095652 [TBL] [Abstract][Full Text] [Related]
2. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering. Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181 [TBL] [Abstract][Full Text] [Related]
3. Cultivation of human bone marrow stromal cells on three-dimensional scaffolds of mineralized collagen: influence of seeding density on colonization, proliferation and osteogenic differentiation. Lode A; Bernhardt A; Gelinsky M J Tissue Eng Regen Med; 2008 Oct; 2(7):400-7. PubMed ID: 18756590 [TBL] [Abstract][Full Text] [Related]
5. Concurrent differentiation of marrow stromal cells to osteogenic and vasculogenic lineages. Henderson JA; He X; Jabbari E Macromol Biosci; 2008 Jun; 8(6):499-507. PubMed ID: 17941111 [TBL] [Abstract][Full Text] [Related]
6. Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds. Wang L; Dormer NH; Bonewald LF; Detamore MS Tissue Eng Part A; 2010 Jun; 16(6):1937-48. PubMed ID: 20070186 [TBL] [Abstract][Full Text] [Related]
7. The influence of an in vitro generated bone-like extracellular matrix on osteoblastic gene expression of marrow stromal cells. Pham QP; Kasper FK; Scott Baggett L; Raphael RM; Jansen JA; Mikos AG Biomaterials; 2008 Jun; 29(18):2729-39. PubMed ID: 18367245 [TBL] [Abstract][Full Text] [Related]
8. Does seeding density affect in vitro mineral nodules formation in novel composite scaffolds? Zhou YF; Sae-Lim V; Chou AM; Hutmacher DW; Lim TM J Biomed Mater Res A; 2006 Jul; 78(1):183-93. PubMed ID: 16628549 [TBL] [Abstract][Full Text] [Related]
9. Mesenchymal stem cell-seeded collagen matrices for bone repair: effects of cyclic tensile strain, cell density, and media conditions on matrix contraction in vitro. Sumanasinghe RD; Osborne JA; Loboa EG J Biomed Mater Res A; 2009 Mar; 88(3):778-86. PubMed ID: 18357565 [TBL] [Abstract][Full Text] [Related]
11. Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Ignatius A; Blessing H; Liedert A; Schmidt C; Neidlinger-Wilke C; Kaspar D; Friemert B; Claes L Biomaterials; 2005 Jan; 26(3):311-8. PubMed ID: 15262473 [TBL] [Abstract][Full Text] [Related]
12. Different substitute biomaterials as potential scaffolds in tissue engineering. Petrovic L; Schlegel AK; Schultze-Mosgau S; Wiltfang J Int J Oral Maxillofac Implants; 2006; 21(2):225-31. PubMed ID: 16634492 [TBL] [Abstract][Full Text] [Related]
13. [Rotating three-dimensional dynamic culture of osteoblasts seeded on segmental scaffolds with controlled internal channel architectures for construction of segmental tissue engineered bone in vitro]. Wang L; Wang Z; Li X; Li DC; Xu SF; Lu BH Zhonghua Yi Xue Za Zhi; 2007 Jan; 87(3):200-3. PubMed ID: 17425853 [TBL] [Abstract][Full Text] [Related]
14. Reduced hydraulic permeability of three-dimensional collagen scaffolds attenuates gel contraction and promotes the growth and differentiation of mesenchymal stem cells. Serpooshan V; Julien M; Nguyen O; Wang H; Li A; Muja N; Henderson JE; Nazhat SN Acta Biomater; 2010 Oct; 6(10):3978-87. PubMed ID: 20451675 [TBL] [Abstract][Full Text] [Related]
15. In vitro enhancement of SAOS-2 cell calcified matrix deposition onto radio frequency magnetron sputtered bioglass-coated titanium scaffolds. Saino E; Maliardi V; Quartarone E; Fassina L; Benedetti L; De Angelis MG; Mustarelli P; Facchini A; Visai L Tissue Eng Part A; 2010 Mar; 16(3):995-1008. PubMed ID: 19839719 [TBL] [Abstract][Full Text] [Related]
16. Fibroblast contractility and growth in plastic compressed collagen gel scaffolds with microstructures correlated with hydraulic permeability. Serpooshan V; Muja N; Marelli B; Nazhat SN J Biomed Mater Res A; 2011 Mar; 96(4):609-20. PubMed ID: 21268235 [TBL] [Abstract][Full Text] [Related]
17. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Mandal BB; Kundu SC Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621 [TBL] [Abstract][Full Text] [Related]
18. Small interfering RNA of alkaline phosphatase inhibits matrix mineralization. Kotobuki N; Matsushima A; Kato Y; Kubo Y; Hirose M; Ohgushi H Cell Tissue Res; 2008 May; 332(2):279-88. PubMed ID: 18317813 [TBL] [Abstract][Full Text] [Related]
19. Retroviral-mediated gene therapy for the differentiation of primary cells into a mineralizing osteoblastic phenotype. Phillips JE; García AJ Methods Mol Biol; 2008; 433():333-54. PubMed ID: 18679633 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional growth behavior of osteoblasts on biomimetic hydroxylapatite scaffolds. Rumpler M; Woesz A; Varga F; Manjubala I; Klaushofer K; Fratzl P J Biomed Mater Res A; 2007 Apr; 81(1):40-50. PubMed ID: 17109410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]