These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18095732)

  • 1. Mobile iron nanoparticle and its role in the formation of SiO2 nanotrench via carbon nanotube-guided carbothermal reduction.
    Byon HR; Choi HC
    Nano Lett; 2008 Jan; 8(1):178-82. PubMed ID: 18095732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotube guided formation of silicon oxide nanotrenches.
    Byon HR; Choi HC
    Nat Nanotechnol; 2007 Mar; 2(3):162-6. PubMed ID: 18654246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SWNT nucleation from carbon-coated SiO2 nanoparticles via a vapor-solid-solid mechanism.
    Page AJ; Chandrakumar KR; Irle S; Morokuma K
    J Am Chem Soc; 2011 Jan; 133(3):621-8. PubMed ID: 21142071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.
    Takagiwa S; Kanasugi O; Nakamura K; Kushida M
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3289-94. PubMed ID: 27451619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SiO/Carbon complex produced by carbothermal reduction for the anode materials of high-performance lithium ion battery.
    Jung MJ; Sheem KY; Lee YS
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2852-8. PubMed ID: 24734700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnO nanowire co-growth on SiO2 and C by carbothermal reduction and vapour advection.
    Vega NC; Wallar R; Caram J; Grinblat G; Tirado M; LaPierre RR; Comedi D
    Nanotechnology; 2012 Jul; 23(27):275602. PubMed ID: 22706726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the graphitization mechanism of SiO(2) nanoparticles in chemical vapor deposition.
    Bachmatiuk A; Börrnert F; Grobosch M; Schäffel F; Wolff U; Scott A; Zaka M; Warner JH; Klingeler R; Knupfer M; Büchner B; Rümmeli MH
    ACS Nano; 2009 Dec; 3(12):4098-104. PubMed ID: 19908851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fate and transport of the SiO2 nanoparticles in a granular activated carbon bed and their impact on the removal of VOCs.
    Salih HH; Patterson CL; Sorial GA; Sinha R; Krishnan R
    J Hazard Mater; 2011 Oct; 193():95-101. PubMed ID: 21802842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism.
    He M; Zhou S; Zhang J; Liu Z; Robinson C
    J Phys Chem B; 2005 May; 109(19):9275-9. PubMed ID: 16852108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of horizontally aligned single-walled carbon nanotubes on anisotropically etched silicon substrate.
    Orofeo CM; Ago H; Ikuta T; Takahasi K; Tsuji M
    Nanoscale; 2010 Sep; 2(9):1708-14. PubMed ID: 20820701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid synthesis of iron phosphate nanoparticles via surface-mediated spontaneous reaction for the growth of high-yield, single-walled carbon nanotubes.
    Yang HJ; Song HJ; Shin HJ; Choi HC
    Langmuir; 2005 Sep; 21(20):9098-102. PubMed ID: 16171338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of an ultradense forest of vertically aligned triple-walled carbon nanotubes of uniform diameter and length using hollow catalytic nanoparticles.
    Baliyan A; Nakajima Y; Fukuda T; Uchida T; Hanajiri T; Maekawa T
    J Am Chem Soc; 2014 Jan; 136(3):1047-53. PubMed ID: 24369068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental studies on irreversibility of electrostatic adsorption of silica nanoparticles at solid-liquid interface.
    Li X; Niitsoo O; Couzis A
    J Colloid Interface Sci; 2014 Apr; 420():50-6. PubMed ID: 24559699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of SiO2 layer intermediation on direct carbothermal synthesis of SiC nanopowders.
    Hwang Y; Riu DH; An JH; Chun D; Kim Y
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6136-9. PubMed ID: 24205615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel nanofluidic chemical cells based on self-assembled solid-state SiO
    Zhu H; Li H; Robertson JWF; Balijepalli A; Krylyuk S; Davydov AV; Kasianowicz JJ; Suehle JS; Li Q
    Nanotechnology; 2017 Oct; 28(43):435601. PubMed ID: 28854152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical oxide thickness for efficient single-walled carbon nanotube growth on silicon using thin SiO2 diffusion barriers.
    Simmons JM; Nichols BM; Marcus MS; Castellini OM; Hamers RJ; Eriksson MA
    Small; 2006 Jul; 2(7):902-9. PubMed ID: 17193143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coating alumina on catalytic iron oxide nanoparticles for synthesizing vertically aligned carbon nanotube arrays.
    Wang X; Krommenhoek PJ; Bradford PD; Gong B; Tracy JB; Parsons GN; Luo TJ; Zhu YT
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4180-4. PubMed ID: 21985010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of inorganic nanoparticles on 17β-estradiol and 17α-ethynylestradiol adsorption by multi-walled carbon nanotubes.
    Sun W; Zhang C; Xu N; Ni J
    Environ Pollut; 2015 Oct; 205():111-20. PubMed ID: 26057473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of bovine serum albumin and humic acid in the interaction between SiO
    Wei X; Qu X; Ding L; Hu J; Jiang W
    Environ Pollut; 2016 Dec; 219():1-8. PubMed ID: 27661722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembling Carbon Nanotube Architectures.
    Dasbach M; Pyschik M; Lehmann V; Parey K; Rhinow D; Reinhardt HM; Hampp NA
    ACS Nano; 2020 Jul; 14(7):8181-8190. PubMed ID: 32551529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.