These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18096063)

  • 21. Simple fixation and storage protocol for preserving the internal structure of intact human donor lenses and extracted human nuclear cataract specimens.
    Mohamed A; Gilliland KO; Metlapally S; Johnsen S; Costello MJ
    Mol Vis; 2013; 19():2352-9. PubMed ID: 24319329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. First safety study of femtosecond laser photodisruption in animal lenses: tissue morphology and cataractogenesis.
    Krueger RR; Kuszak J; Lubatschowski H; Myers RI; Ripken T; Heisterkamp A
    J Cataract Refract Surg; 2005 Dec; 31(12):2386-94. PubMed ID: 16473236
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Massive formation of square array junctions dramatically alters cell shape but does not cause lens opacity in the cav1-KO mice.
    Biswas SK; Brako L; Lo WK
    Exp Eye Res; 2014 Aug; 125():9-19. PubMed ID: 24877741
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fiber cell morphology and cytoplasmic texture in cataractous and normal human lens nuclei.
    al-Ghoul KJ; Costello MJ
    Curr Eye Res; 1996 May; 15(5):533-42. PubMed ID: 8670754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of gap junctions and square array junctions in the mammalian lens.
    Costello MJ; McIntosh TJ; Robertson JD
    Invest Ophthalmol Vis Sci; 1989 May; 30(5):975-89. PubMed ID: 2722452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomicroscopy and scanning electron microscopy of early opacities in the aging human lens.
    Vrensen G; Willekens B
    Invest Ophthalmol Vis Sci; 1990 Aug; 31(8):1582-91. PubMed ID: 2387688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Scanning electron microscopic study of the development of crystalline lens fiber].
    Hotta K
    Nihon Ika Daigaku Zasshi; 1995 Apr; 62(2):161-75. PubMed ID: 7775653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The relationship between morphology and birefringent properties of fish lenses.
    Burke PA; Farnsworth PN; Bettelheim FA
    Curr Eye Res; 1981-1982; 1(12):689-94. PubMed ID: 7347634
    [No Abstract]   [Full Text] [Related]  

  • 29. Histopathological study of Emory mouse cataract.
    Uga S; Tsuchiya K; Ishikawa S
    Graefes Arch Clin Exp Ophthalmol; 1988; 226(1):15-21. PubMed ID: 3342971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphology of age-related cuneiform cortical cataracts: the case for mechanical stress.
    Michael R; Barraquer RI; Willekens B; van Marle J; Vrensen GF
    Vision Res; 2008 Feb; 48(4):626-34. PubMed ID: 18221767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in the internal structure of the human crystalline lens with age and accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA; Vrensen GF
    Vision Res; 2003 Oct; 43(22):2363-75. PubMed ID: 12962993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane cholesterol and phospholipid in consecutive concentric sections of human lenses.
    Li LK; So L; Spector A
    J Lipid Res; 1985 May; 26(5):600-9. PubMed ID: 4020298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light scattering and morphology of cataract formation in transgenic mice containing the HIV-1 protease linked to the lens alpha A-crystallin promoter.
    Bettelheim FA; Churchill AC; Siew EL; Tumminia SJ; Russell P
    Exp Eye Res; 1997 May; 64(5):667-74. PubMed ID: 9245895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visible changes of the lens with age.
    Niesel P
    Trans Ophthalmol Soc U K (1962); 1982; 102 Pt 3():327-30. PubMed ID: 6964275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and repair of cataract induced by ultraviolet radiation.
    Michael R
    Ophthalmic Res; 2000; 32 Suppl 1():ii-iii; 1-44. PubMed ID: 10817682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of aging and hyperbaric oxygen in vivo on guinea pig lens lipids and nuclear light scatter.
    Borchman D; Giblin FJ; Leverenz VR; Reddy VN; Lin LR; Yappert MC; Tang D; Li L
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3061-73. PubMed ID: 10967065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An index for human lens transparency related to age and lens layer: comparison between normal volunteers and diabetic patients with still clear lenses.
    Sasaki H; Hockwin O; Kasuga T; Nagai K; Sakamoto Y; Sasaki K
    Ophthalmic Res; 1999; 31(2):93-103. PubMed ID: 9933770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age-related changes in eye lens biomechanics, morphology, refractive index and transparency.
    Cheng C; Parreno J; Nowak RB; Biswas SK; Wang K; Hoshino M; Uesugi K; Yagi N; Moncaster JA; Lo WK; Pierscionek B; Fowler VM
    Aging (Albany NY); 2019 Dec; 11(24):12497-12531. PubMed ID: 31844034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disulfide cross-linking of urea-insoluble proteins in rabbit lenses treated with hyperbaric oxygen.
    Padgaonkar V; Giblin FJ; Reddy VN
    Exp Eye Res; 1989 Nov; 49(5):887-99. PubMed ID: 2591503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts.
    Gilliland KO; Freel CD; Johnsen S; Craig Fowler W; Costello MJ
    Exp Eye Res; 2004 Oct; 79(4):563-76. PubMed ID: 15381040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.