These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 18096222)
1. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Khang D; Lu J; Yao C; Haberstroh KM; Webster TJ Biomaterials; 2008 Mar; 29(8):970-83. PubMed ID: 18096222 [TBL] [Abstract][Full Text] [Related]
2. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Lu J; Rao MP; MacDonald NC; Khang D; Webster TJ Acta Biomater; 2008 Jan; 4(1):192-201. PubMed ID: 17851147 [TBL] [Abstract][Full Text] [Related]
6. Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces. Zhu X; Chen J; Scheideler L; Altebaeumer T; Geis-Gerstorfer J; Kern D Cells Tissues Organs; 2004; 178(1):13-22. PubMed ID: 15550756 [TBL] [Abstract][Full Text] [Related]
7. Effect of supramicron roughness characteristics produced by 1- and 2-step acid etching on the osseointegration capability of titanium. Att W; Tsukimura N; Suzuki T; Ogawa T Int J Oral Maxillofac Implants; 2007; 22(5):719-28. PubMed ID: 17974105 [TBL] [Abstract][Full Text] [Related]
8. PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. Miller DC; Haberstroh KM; Webster TJ J Biomed Mater Res A; 2007 Jun; 81(3):678-84. PubMed ID: 17187386 [TBL] [Abstract][Full Text] [Related]
9. Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells. Grinevich A; Bacakova L; Choukourov A; Boldyryeva H; Pihosh Y; Slavinska D; Noskova L; Skuciova M; Lisa V; Biederman H J Biomed Mater Res A; 2009 Mar; 88(4):952-66. PubMed ID: 18384161 [TBL] [Abstract][Full Text] [Related]
10. Surface nanofeature effects on titanium-adherent human mesenchymal stem cells. Valencia S; Gretzer C; Cooper LF Int J Oral Maxillofac Implants; 2009; 24(1):38-46. PubMed ID: 19344023 [TBL] [Abstract][Full Text] [Related]
12. Assessment of the cytocompatibility of different coated titanium surfaces to fibroblasts and osteoblasts. Harris LG; Patterson LM; Bacon C; Gwynn Ia; Richards RG J Biomed Mater Res A; 2005 Apr; 73(1):12-20. PubMed ID: 15704113 [TBL] [Abstract][Full Text] [Related]
13. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Anselme K; Bigerelle M Acta Biomater; 2005 Mar; 1(2):211-22. PubMed ID: 16701798 [TBL] [Abstract][Full Text] [Related]
14. Differential regulation of osteoblasts by substrate microstructural features. Zinger O; Zhao G; Schwartz Z; Simpson J; Wieland M; Landolt D; Boyan B Biomaterials; 2005 May; 26(14):1837-47. PubMed ID: 15576158 [TBL] [Abstract][Full Text] [Related]
15. The effect of superficial chemistry of titanium on osteoblastic function. Tsukimura N; Kojima N; Kubo K; Att W; Takeuchi K; Kameyama Y; Maeda H; Ogawa T J Biomed Mater Res A; 2008 Jan; 84(1):108-16. PubMed ID: 17600332 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of osteoblast adhesion to UV-photofunctionalized titanium via an electrostatic mechanism. Iwasa F; Hori N; Ueno T; Minamikawa H; Yamada M; Ogawa T Biomaterials; 2010 Apr; 31(10):2717-27. PubMed ID: 20035996 [TBL] [Abstract][Full Text] [Related]
18. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness. Samaroo HD; Lu J; Webster TJ Int J Nanomedicine; 2008; 3(1):75-82. PubMed ID: 18488418 [TBL] [Abstract][Full Text] [Related]
19. Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Khang D; Choi J; Im YM; Kim YJ; Jang JH; Kang SS; Nam TH; Song J; Park JW Biomaterials; 2012 Sep; 33(26):5997-6007. PubMed ID: 22632766 [TBL] [Abstract][Full Text] [Related]