These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18096555)

  • 21. Remote protein homology detection using recurrence quantification analysis and amino acid physicochemical properties.
    Yang Y; Tantoso E; Li KB
    J Theor Biol; 2008 May; 252(1):145-54. PubMed ID: 18342336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic programming for creating Chou's pseudo amino acid based features for submitochondria localization.
    Nanni L; Lumini A
    Amino Acids; 2008 May; 34(4):653-60. PubMed ID: 18175047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Searching for interpretable rules for disease mutations: a simulated annealing bump hunting strategy.
    Jiang R; Yang H; Sun F; Chen T
    BMC Bioinformatics; 2006 Sep; 7():417. PubMed ID: 16984653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection.
    Damoulas T; Girolami MA
    Bioinformatics; 2008 May; 24(10):1264-70. PubMed ID: 18378524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of propensities of amino acids to the local structural environments to understand effect of substitution mutations on protein stability.
    Reddy BV; Datta S; Tiwari S
    Protein Eng; 1998 Dec; 11(12):1137-45. PubMed ID: 9930663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classification of conformational stability of protein mutants from 3D pseudo-folding graph representation of protein sequences using support vector machines.
    Fernández M; Caballero J; Fernández L; Abreu JI; Acosta G
    Proteins; 2008 Jan; 70(1):167-75. PubMed ID: 17654549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel method based on physicochemical properties of amino acids and one class classification algorithm for disease gene identification.
    Yousef A; Charkari NM
    J Biomed Inform; 2015 Aug; 56():300-6. PubMed ID: 26146156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two multi-classification strategies used on SVM to predict protein structural classes by using auto covariance.
    Wu J; Li YZ; Li ML; Yu LZ
    Interdiscip Sci; 2009 Dec; 1(4):315-9. PubMed ID: 20640811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences.
    Chen P; Li J; Wong L; Kuwahara H; Huang JZ; Gao X
    Proteins; 2013 Aug; 81(8):1351-62. PubMed ID: 23504705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amino acid similarity matrices based on force fields.
    Dosztányi Z; Torda AE
    Bioinformatics; 2001 Aug; 17(8):686-99. PubMed ID: 11524370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic analysis of protein stability and function.
    Pakula AA; Sauer RT
    Annu Rev Genet; 1989; 23():289-310. PubMed ID: 2694933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank.
    Bastolla U; Porto M; Roman HE; Vendruscolo M
    BMC Evol Biol; 2006 May; 6():43. PubMed ID: 16737532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved feature-based prediction of SNPs in human cytochrome P450 enzymes.
    Li L; Xiong Y; Zhang ZY; Guo Q; Xu Q; Liow HH; Zhang YH; Wei DQ
    Interdiscip Sci; 2015 Mar; 7(1):65-77. PubMed ID: 25792441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A systematic exploration of [Formula: see text] cutoff ranges in machine learning models for protein mutation stability prediction.
    Olney R; Tuor A; Jagodzinski F; Hutchinson B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1840022. PubMed ID: 30419784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0.
    Dehouck Y; Grosfils A; Folch B; Gilis D; Bogaerts P; Rooman M
    Bioinformatics; 2009 Oct; 25(19):2537-43. PubMed ID: 19654118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
    Larson SM; Di Nardo AA; Davidson AR
    J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated inference of molecular mechanisms of disease from amino acid substitutions.
    Li B; Krishnan VG; Mort ME; Xin F; Kamati KK; Cooper DN; Mooney SD; Radivojac P
    Bioinformatics; 2009 Nov; 25(21):2744-50. PubMed ID: 19734154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving protein fold recognition and structural class prediction accuracies using physicochemical properties of amino acids.
    Raicar G; Saini H; Dehzangi A; Lal S; Sharma A
    J Theor Biol; 2016 Aug; 402():117-28. PubMed ID: 27164998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of protein stability upon point mutations.
    Gromiha MM
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1569-73. PubMed ID: 18031268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.