These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 18096801)

  • 1. Role of intermolecular forces in defining material properties of protein nanofibrils.
    Knowles TP; Fitzpatrick AW; Meehan S; Mott HR; Vendruscolo M; Dobson CM; Welland ME
    Science; 2007 Dec; 318(5858):1900-3. PubMed ID: 18096801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular structure of amyloid fibrils: insights from solid-state NMR.
    Tycko R
    Q Rev Biophys; 2006 Feb; 39(1):1-55. PubMed ID: 16772049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analytical solution to the kinetics of breakable filament assembly.
    Knowles TP; Waudby CA; Devlin GL; Cohen SI; Aguzzi A; Vendruscolo M; Terentjev EM; Welland ME; Dobson CM
    Science; 2009 Dec; 326(5959):1533-7. PubMed ID: 20007899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural organization of amyloid fibrils by atomic force microscopy.
    Chamberlain AK; MacPhee CE; Zurdo J; Morozova-Roche LA; Hill HA; Dobson CM; Davis JJ
    Biophys J; 2000 Dec; 79(6):3282-93. PubMed ID: 11106631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consensus features in amyloid fibrils: sheet-sheet recognition via a (polar or nonpolar) zipper structure.
    Zheng J; Ma B; Nussinov R
    Phys Biol; 2006 Oct; 3(3):P1-4. PubMed ID: 17021379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural regulation of a peptide-conjugated graft copolymer: a simple model for amyloid formation.
    Koga T; Taguchi K; Kobuke Y; Kinoshita T; Higuchi M
    Chemistry; 2003 Mar; 9(5):1146-56. PubMed ID: 12596151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of lysine-28 side-chain acetylation on the nanomechanical behavior of alzheimer amyloid beta25-35 fibrils.
    Karsai A; Nagy A; Kengyel A; Mártonfalvi Z; Grama L; Penke B; Kellermayer MS
    J Chem Inf Model; 2005; 45(6):1641-6. PubMed ID: 16309267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AlphaB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta2-microglobulin.
    Raman B; Ban T; Sakai M; Pasta SY; Ramakrishna T; Naiki H; Goto Y; Rao ChM
    Biochem J; 2005 Dec; 392(Pt 3):573-81. PubMed ID: 16053447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of "hot spots" of aggregation in disease-linked polypeptides.
    Sánchez de Groot N; Pallarés I; Avilés FX; Vendrell J; Ventura S
    BMC Struct Biol; 2005 Sep; 5():18. PubMed ID: 16197548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of Nanostructures by Peptides.
    Pachahara SK; Subbalakshmi C; Nagaraj R
    Curr Protein Pept Sci; 2017; 18(9):920-938. PubMed ID: 27455966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils.
    Petkova AT; Leapman RD; Guo Z; Yau WM; Mattson MP; Tycko R
    Science; 2005 Jan; 307(5707):262-5. PubMed ID: 15653506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomistic simulation approach to a continuum description of self-assembled beta-sheet filaments.
    Park J; Kahng B; Kamm RD; Hwang W
    Biophys J; 2006 Apr; 90(7):2510-24. PubMed ID: 16415051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic view of a toxic amyloid small oligomer.
    Laganowsky A; Liu C; Sawaya MR; Whitelegge JP; Park J; Zhao M; Pensalfini A; Soriaga AB; Landau M; Teng PK; Cascio D; Glabe C; Eisenberg D
    Science; 2012 Mar; 335(6073):1228-31. PubMed ID: 22403391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HRMAS 1H NMR conformational study of the resin-bound amyloid-forming peptide GNNQQNY from the yeast prion Sup35.
    Andrey SB; Chan ML; Power WP
    J Phys Chem A; 2010 Mar; 114(10):3457-65. PubMed ID: 20155963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mechanism and application of molecular self-assembly in Sup35 prion domain of Saccharomyces cerevisiae].
    Yin W; He J; Yu Z; Wang J
    Sheng Wu Gong Cheng Xue Bao; 2011 Oct; 27(10):1401-7. PubMed ID: 22260056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the surface chemistry of insulin fibrils on the aggregation rate.
    Hsieh S; Hsieh CW; Chou HH; Chang CW; Chu LY
    Chemphyschem; 2014 Jan; 15(1):76-9. PubMed ID: 24302557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators.
    Rajagopal K; Ozbas B; Pochan DJ; Schneider JP
    Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled amyloid fibrils with controllable conformational heterogeneity.
    Lee G; Lee W; Lee H; Lee CY; Eom K; Kwon T
    Sci Rep; 2015 Nov; 5():16220. PubMed ID: 26592772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An amyloid-like fibril-forming supramolecular cross-β-structure of a model peptide: a crystallographic insight.
    Maity S; Kumar P; Haldar D
    Org Biomol Chem; 2011 May; 9(10):3787-91. PubMed ID: 21448469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.