These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 18097758)

  • 41. Compartmental origins of the striatopallidal projection in the primate.
    Giménez-Amaya JM; Graybiel AM
    Neuroscience; 1990; 34(1):111-26. PubMed ID: 1691462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dorsal raphe, substantia nigra and locus coeruleus: interconnections with each other and the neostriatum.
    Pasquier DA; Kemper TL; Forbes WB; Morgane PJ
    Brain Res Bull; 1977; 2(5):323-39. PubMed ID: 922511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Analysis of the morphological substrate of information processing in the dog brain pallidal complex based on organizational characteristics of its afferent projections].
    Chivileva OG
    Ross Fiziol Zh Im I M Sechenova; 2002 Oct; 88(10):1287-94. PubMed ID: 12503371
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Projections of the substantia nigra, ventral tegmental area and amygdala to the pallidum in dog brain].
    Gorbachevskaia AI
    Morfologiia; 1999; 115(1):11-4. PubMed ID: 10561844
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efferent connections of the striatopallidal and amygdaloid components of the substantia innominata in the cat: projections to the nucleus accumbens and caudate nucleus.
    Spooren WP; Veening JG; Groenewegen HJ; Cools AR
    Neuroscience; 1991; 44(2):431-47. PubMed ID: 1944894
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of the morphological substrate for information processing in the pallidal nuclear complex of the dog brain in terms of the organizational characteristics of its afferent projections.
    Chivileva OG
    Neurosci Behav Physiol; 2004 Mar; 34(3):271-6. PubMed ID: 15151181
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Projections of the basal ganglia to the zona incerta of the dog diencephalon.
    Chivileva OG; Gorbachevskaya AI
    Neurosci Behav Physiol; 2008 Sep; 38(7):743-6. PubMed ID: 18709459
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemical organization of projection neurons in the rat accumbens nucleus and olfactory tubercle.
    Zhou L; Furuta T; Kaneko T
    Neuroscience; 2003; 120(3):783-98. PubMed ID: 12895518
    [TBL] [Abstract][Full Text] [Related]  

  • 49. D1 and D2 dopamine receptors differentially increase Fos-like immunoreactivity in accumbal projections to the ventral pallidum and midbrain.
    Robertson GS; Jian M
    Neuroscience; 1995 Feb; 64(4):1019-34. PubMed ID: 7753373
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cholinergic and non-cholinergic projections from the canine pontomesencephalic tegmentum (Ch5 area) to the caudal intralaminar thalamic nuclei.
    Isaacson LG; Tanaka D
    Exp Brain Res; 1986; 62(1):179-88. PubMed ID: 3956632
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Afferent thalamic projections in the dog brain pallidal structures].
    Gorbachevskaia AI; Chivileva OG
    Morfologiia; 2001; 119(3):30-5. PubMed ID: 11558414
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single pallidal neurons project both to the striatum and thalamus in the rat.
    Takada M; Ng G; Hattori T
    Neurosci Lett; 1986 Sep; 69(3):217-20. PubMed ID: 3763051
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An experimental study of the ventral striatum of the golden hamster. I. Neuronal connections of the nucleus accumbens.
    Newman R; Winans SS
    J Comp Neurol; 1980 May; 191(2):167-92. PubMed ID: 7410590
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An electrophysiological characterization of projections from the pedunculopontine area to entopeduncular nucleus and globus pallidus in the cat.
    Gonya-Magee T; Anderson ME
    Exp Brain Res; 1983; 49(2):269-79. PubMed ID: 6299773
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An experimental study of the ventral striatum of the golden hamster. II. Neuronal connections of the olfactory tubercle.
    Newman R; Winans SS
    J Comp Neurol; 1980 May; 191(2):193-212. PubMed ID: 7410591
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat.
    Hallanger AE; Wainer BH
    J Comp Neurol; 1988 Aug; 274(4):483-515. PubMed ID: 2464621
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contralateral pallidothalamic and pallidotegmental projections in primates: an anterograde and retrograde labeling study.
    Hazrati LN; Parent A
    Brain Res; 1991 Dec; 567(2):212-23. PubMed ID: 1817727
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque.
    Hedreen JC; DeLong MR
    J Comp Neurol; 1991 Feb; 304(4):569-95. PubMed ID: 2013650
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko.
    Russchen FT; Jonker AJ
    J Comp Neurol; 1988 Oct; 276(1):61-80. PubMed ID: 3192764
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Topography and functional role of dopaminergic projections from the ventral mesencephalic tegmentum to the ventral pallidum.
    Klitenick MA; Deutch AY; Churchill L; Kalivas PW
    Neuroscience; 1992 Sep; 50(2):371-86. PubMed ID: 1279461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.