These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18098188)

  • 1. An innovative method to obtain porous PLLA scaffolds with highly spherical and interconnected pores.
    Vaquette C; Frochot C; Rahouadj R; Wang X
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):9-17. PubMed ID: 18098188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores.
    Chen VJ; Ma PX
    Biomaterials; 2004 May; 25(11):2065-73. PubMed ID: 14741621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The double porogen approach as a new technique for the fabrication of interconnected poly(L-lactic acid) and starch based biodegradable scaffolds.
    Ghosh S; Viana JC; Reis RL; Mano JF
    J Mater Sci Mater Med; 2007 Feb; 18(2):185-93. PubMed ID: 17323149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paraffin spheres as porogen to fabricate poly(L-lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering.
    Ma Z; Gao C; Gong Y; Shen J
    J Biomed Mater Res B Appl Biomater; 2003 Oct; 67(1):610-7. PubMed ID: 14528458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
    Liu X; Won Y; Ma PX
    Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.
    Flaibani M; Elvassore N
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1632-9. PubMed ID: 24364970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microporous poly(L-lactic acid) membranes fabricated by polyethylene glycol solvent-cast/particulate leaching technique.
    Selvam S; Chang WV; Nakamura T; Samant DM; Thomas PB; Trousdale MD; Mircheff AK; Schechter JE; Yiu SC
    Tissue Eng Part C Methods; 2009 Sep; 15(3):463-74. PubMed ID: 19260769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of shape memory polymer scaffolds via solvent casting/particulate leaching.
    De Nardo L; Bertoldi S; Cigada A; Tanzi MC; Haugen HJ; Farè S
    J Appl Biomater Funct Mater; 2012 Sep; 10(2):119-26. PubMed ID: 23015372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(lactic acid) scaffold fabricated by gelatin particle leaching has good biocompatibility for chondrogenesis.
    Gong Y; Ma Z; Zhou Q; Li J; Gao C; Shen J
    J Biomater Sci Polym Ed; 2008; 19(2):207-21. PubMed ID: 18237493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization.
    Gupte MJ; Swanson WB; Hu J; Jin X; Ma H; Zhang Z; Liu Z; Feng K; Feng G; Xiao G; Hatch N; Mishina Y; Ma PX
    Acta Biomater; 2018 Dec; 82():1-11. PubMed ID: 30321630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(lactic-co-glycolic acid) bone scaffolds with inverted colloidal crystal geometry.
    Cuddihy MJ; Kotov NA
    Tissue Eng Part A; 2008 Oct; 14(10):1639-49. PubMed ID: 18491955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications.
    Sadiasa A; Nguyen TH; Lee BT
    J Biomater Sci Polym Ed; 2014; 25(2):150-67. PubMed ID: 24138179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering.
    Gross KA; Rodríguez-Lorenzo LM
    Biomaterials; 2004 Sep; 25(20):4955-62. PubMed ID: 15109856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology.
    Zhang R; Ma PX
    J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    J Mater Sci Mater Med; 2015 Jan; 26(1):5366. PubMed ID: 25578714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.
    Lv Q; Nair L; Laurencin CT
    J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.