These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18098195)

  • 1. Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure.
    Fu Q; Rahaman MN; Dogan F; Bal BS
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):125-35. PubMed ID: 18098195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications.
    Fu Q; Rahaman MN; Dogan F; Bal BS
    Biomed Mater; 2008 Jun; 3(2):025005. PubMed ID: 18458369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior.
    Fu Q; Rahaman MN; Dogan F; Bal BS
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):514-22. PubMed ID: 18338786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics.
    Zhang Y; Zhou K; Bao Y; Zhang D
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):340-6. PubMed ID: 25428079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique.
    Yang TY; Lee JM; Yoon SY; Park HC
    J Mater Sci Mater Med; 2010 May; 21(5):1495-502. PubMed ID: 20099009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering.
    Deville S; Saiz E; Tomsia AP
    Biomaterials; 2006 Nov; 27(32):5480-9. PubMed ID: 16857254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proliferation and function of MC3T3-E1 cells on freeze-cast hydroxyapatite scaffolds with oriented pore architectures.
    Fu Q; Rahaman MN; Bal BS; Brown RF
    J Mater Sci Mater Med; 2009 May; 20(5):1159-65. PubMed ID: 19115092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications.
    Landi E; Valentini F; Tampieri A
    Acta Biomater; 2008 Nov; 4(6):1620-6. PubMed ID: 18579459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds.
    Farhangdoust S; Zamanian A; Yasaei M; Khorami M
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):453-60. PubMed ID: 25428095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions.
    Liu X; Rahaman MN; Fu Q; Tomsia AP
    Acta Biomater; 2012 Jan; 8(1):415-23. PubMed ID: 21855661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds.
    Sultana N; Wang M
    J Mater Sci Mater Med; 2008 Jul; 19(7):2555-61. PubMed ID: 17665100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the configuration of porous bone scaffolds made of Polyamide/Hydroxyapatite composites using Selective Laser Sintering for tissue engineering applications.
    Ramu M; Ananthasubramanian M; Kumaresan T; Gandhinathan R; Jothi S
    Biomed Mater Eng; 2018; 29(6):739-755. PubMed ID: 30282331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoindentation on porous bioceramic scaffolds for bone tissue engineering.
    Chowdhury S; Thomas V; Dean D; Catledge SA; Vohra YK
    J Nanosci Nanotechnol; 2005 Nov; 5(11):1816-20. PubMed ID: 16433415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of porous fluorohydroxyapatite bone-scaffolds fabricated using freeze casting.
    Yin TJ; Jeyapalina S; Naleway SE
    J Mech Behav Biomed Mater; 2021 Nov; 123():104717. PubMed ID: 34352488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method.
    Macchetta A; Turner IG; Bowen CR
    Acta Biomater; 2009 May; 5(4):1319-27. PubMed ID: 19112055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.