These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 18098209)
1. Structural and solvent effects on the 13C and 15N NMR chemical shifts of indoloquinoline alkaloids: experimental and DFT study. Tousek J; Van Miert S; Pieters L; Van Baelen G; Hostyn S; Maes BU; Lemière G; Dommisse R; Marek R Magn Reson Chem; 2008 Jan; 46(1):42-51. PubMed ID: 18098209 [TBL] [Abstract][Full Text] [Related]
2. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2'-biquinoline. Pazderski L; Tousek J; Sitkowski J; Kozerski L; Szłyk E Magn Reson Chem; 2007 Dec; 45(12):1059-71. PubMed ID: 18044805 [TBL] [Abstract][Full Text] [Related]
3. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline. Pazderski L; Tousek J; Sitkowski J; Kozerski L; Szłyk E Magn Reson Chem; 2007 Dec; 45(12):1045-58. PubMed ID: 18044804 [TBL] [Abstract][Full Text] [Related]
4. Conformational studies of poly(9,9-dialkylfluorene)s in solution using NMR spectroscopy and density functional theory calculations. Justino LL; Ramos ML; Abreu PE; Carvalho RA; Sobral AJ; Scherf U; Burrows HD J Phys Chem B; 2009 Sep; 113(35):11808-21. PubMed ID: 19663434 [TBL] [Abstract][Full Text] [Related]
5. NMR solvent shifts of acetonitrile from frozen density embedding calculations. Bulo RE; Jacob CR; Visscher L J Phys Chem A; 2008 Mar; 112(12):2640-7. PubMed ID: 18302351 [TBL] [Abstract][Full Text] [Related]
6. Experimental and theoretical investigation of the 13C and 15N chemical shift tensors in melanostatin-exploring the chemical shift tensor as a structural probe. Strohmeier M; Grant DM J Am Chem Soc; 2004 Jan; 126(3):966-77. PubMed ID: 14733574 [TBL] [Abstract][Full Text] [Related]
7. A computationally feasible quantum chemical model for 13C NMR chemical shifts of PCB-derived carboxylic acids. Kolehmainen E; Tuppurainen K; Lanina SA; Sievänen E; Laihia K; Boyarskiy VP; Nikiforov VA; Zhesko TE Chemosphere; 2006 Jan; 62(3):368-74. PubMed ID: 15992857 [TBL] [Abstract][Full Text] [Related]
8. The antimalarial and cytotoxic drug cryptolepine intercalates into DNA at cytosine-cytosine sites. Lisgarten JN; Coll M; Portugal J; Wright CW; Aymami J Nat Struct Biol; 2002 Jan; 9(1):57-60. PubMed ID: 11731803 [TBL] [Abstract][Full Text] [Related]
9. Understanding the NMR chemical shifts for 6-halopurines: role of structure, solvent and relativistic effects. Standara S; Malináková K; Marek R; Marek J; Hocek M; Vaara J; Straka M Phys Chem Chem Phys; 2010 May; 12(19):5126-39. PubMed ID: 20445915 [TBL] [Abstract][Full Text] [Related]
10. Computational studies of 13C NMR chemical shifts of saccharides. Taubert S; Konschin H; Sundholm D Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565 [TBL] [Abstract][Full Text] [Related]
11. Carbon chemical shift tensor components in quinolines and quinoline N-oxides. Casabianca LB; Faller CM; de Dios AC J Phys Chem A; 2006 Jan; 110(1):234-40. PubMed ID: 16392860 [TBL] [Abstract][Full Text] [Related]
12. 15N and 13C NMR chemical shifts of 6-(fluoro, chloro, bromo, and iodo)purine 2'-deoxynucleosides: measurements and calculations. Bai S; Dmitrenko O; Dybowski C Magn Reson Chem; 2010 Jan; 48(1):61-7. PubMed ID: 19937632 [TBL] [Abstract][Full Text] [Related]
13. Understanding sterol-membrane interactions part I: Hartree-Fock versus DFT calculations of 13C and 1H NMR isotropic chemical shifts of sterols in solution and analysis of hydrogen-bonding effects. Jolibois F; Soubias O; Réat V; Milon A Chemistry; 2004 Nov; 10(23):5996-6004. PubMed ID: 15497135 [TBL] [Abstract][Full Text] [Related]
14. Experimental and theoretical NMR study of selected oxocarboxylic acid oximes. Malek K; Vala M; Kozłowski H; Proniewicz LM Magn Reson Chem; 2004 Jan; 42(1):23-9. PubMed ID: 14745813 [TBL] [Abstract][Full Text] [Related]
15. Substituent effects on 15N and 13C NMR chemical shifts of 3-phenylisoxazoles: a theoretical and spectroscopic study. Schofield MH; Sorel MA; Manalansan RJ; Richardson DP; Markgraf JH Magn Reson Chem; 2006 Sep; 44(9):851-5. PubMed ID: 16804868 [TBL] [Abstract][Full Text] [Related]
16. Theoretical and experimental NMR study of protopine hydrochloride isomers. Tousek J; Malináková K; Dostál J; Marek R Magn Reson Chem; 2005 Jul; 43(7):578-81. PubMed ID: 15883981 [TBL] [Abstract][Full Text] [Related]
17. Effects of polymorphic differences for sulfanilamide, as seen through 13C and 15N solid-state NMR, together with shielding calculations. Portieri A; Harris RK; Fletton RA; Lancaster RW; Threlfall TL Magn Reson Chem; 2004 Mar; 42(3):313-20. PubMed ID: 14971016 [TBL] [Abstract][Full Text] [Related]
18. Experimental and computational characterization of the 17O quadrupole coupling and magnetic shielding tensors for p-nitrobenzaldehyde and formaldehyde. Wu G; Mason P; Mo X; Terskikh V J Phys Chem A; 2008 Feb; 112(5):1024-32. PubMed ID: 18193848 [TBL] [Abstract][Full Text] [Related]
19. Complete 1H, 13C and 15N NMR assignment of tirapazamine and related 1,2,4-benzotriazine N-oxides. Boyd M; Hay MP; Boyd PD Magn Reson Chem; 2006 Oct; 44(10):948-54. PubMed ID: 16900565 [TBL] [Abstract][Full Text] [Related]
20. An NMR, IR and theoretical investigation of (1)H chemical shifts and hydrogen bonding in phenols. Abraham RJ; Mobli M Magn Reson Chem; 2007 Oct; 45(10):865-77. PubMed ID: 17729232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]