BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 18098328)

  • 1. Ranking the affinity of aromatic residues for carbon nanotubes by using designed surfactant peptides.
    Xie H; Becraft EJ; Baughman RH; Dalton AB; Dieckmann GR
    J Pept Sci; 2008 Feb; 14(2):139-51. PubMed ID: 18098328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of electron-donating and electron-withdrawing groups on peptide/single-walled carbon nanotube interactions.
    Poenitzsch VZ; Winters DC; Xie H; Dieckmann GR; Dalton AB; Musselman IH
    J Am Chem Soc; 2007 Nov; 129(47):14724-32. PubMed ID: 17985894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous exfoliation of single-walled carbon nanotubes dispersed using a designed amphiphilic peptide.
    Nicolosi V; Cathcart H; Dalton AR; Aherne D; Dieckmann GR; Coleman JN
    Biomacromolecules; 2008 Feb; 9(2):598-602. PubMed ID: 18220348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled assembly of carbon nanotubes by designed amphiphilic Peptide helices.
    Dieckmann GR; Dalton AB; Johnson PA; Razal J; Chen J; Giordano GM; Muñoz E; Musselman IH; Baughman RH; Draper RK
    J Am Chem Soc; 2003 Feb; 125(7):1770-7. PubMed ID: 12580602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides.
    Samarajeewa DR; Dieckmann GR; Nielsen SO; Musselman IH
    Nanoscale; 2012 Aug; 4(15):4544-54. PubMed ID: 22699559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of aromatic content for peptide/single-walled carbon nanotube interactions.
    Zorbas V; Smith AL; Xie H; Ortiz-Acevedo A; Dalton AB; Dieckmann GR; Draper RK; Baughman RH; Musselman IH
    J Am Chem Soc; 2005 Sep; 127(35):12323-8. PubMed ID: 16131210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of surfactant and boron doping on the BWF feature in the Raman spectrum of single-wall carbon nanotube aqueous dispersions.
    Blackburn JL; Engtrakul C; McDonald TJ; Dillon AC; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25551-8. PubMed ID: 17166007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-walled carbon nanotube binding peptides: probing tryptophan's importance by unnatural amino acid substitution.
    Su Z; Mui K; Daub E; Leung T; Honek J
    J Phys Chem B; 2007 Dec; 111(51):14411-7. PubMed ID: 18062679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing new surfactant peptides for binding to carbon nanotubes via computational approaches.
    Mansouri A; Mahnam K
    J Mol Graph Model; 2017 Jun; 74():61-72. PubMed ID: 28359959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of single-walled carbon nanotube purification techniques using Raman spectroscopy.
    Musumeci AW; Waclawik ER; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):140-2. PubMed ID: 18207450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory peptides are susceptible to oxidation by metallic impurities within carbon nanotubes.
    Ambrosi A; Pumera M
    Chemistry; 2010 Feb; 16(6):1786-92. PubMed ID: 20066697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectrophoretic manipulation of fluorescing single-walled carbon nanotubes.
    Mureau N; Mendoza E; Silva SR
    Electrophoresis; 2007 May; 28(10):1495-8. PubMed ID: 17427259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular, self-assembling peptide linkers for stable and regenerable carbon nanotube biosensor interfaces.
    Contarino MR; Sergi M; Harrington AE; Lazareck A; Xu J; Chaiken I
    J Mol Recognit; 2006; 19(4):363-71. PubMed ID: 16775846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between single-walled carbon nanotubes and lysozyme.
    Bomboi F; Bonincontro A; La Mesa C; Tardani F
    J Colloid Interface Sci; 2011 Mar; 355(2):342-7. PubMed ID: 21215413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells.
    Chin SF; Baughman RH; Dalton AB; Dieckmann GR; Draper RK; Mikoryak C; Musselman IH; Poenitzsch VZ; Xie H; Pantano P
    Exp Biol Med (Maywood); 2007 Oct; 232(9):1236-44. PubMed ID: 17895532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties.
    Zhang X; Lü Z; Wen M; Liang H; Zhang J; Liu Z
    J Phys Chem B; 2005 Jan; 109(3):1101-7. PubMed ID: 16851066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase behavior and shear alignment in SWNT-surfactant dispersions.
    Nativ-Roth E; Yerushalmi-Rozen R; Regev O
    Small; 2008 Sep; 4(9):1459-67. PubMed ID: 18763230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersing nanotubes with surfactants: a microscopic statistical mechanical analysis.
    Patel N; Egorov SA
    J Am Chem Soc; 2005 Oct; 127(41):14124-5. PubMed ID: 16218573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties.
    Zhang L; Balzano L; Resasco DE
    J Phys Chem B; 2005 Aug; 109(30):14375-81. PubMed ID: 16852808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides.
    Ortiz-Acevedo A; Xie H; Zorbas V; Sampson WM; Dalton AB; Baughman RH; Draper RK; Musselman IH; Dieckmann GR
    J Am Chem Soc; 2005 Jul; 127(26):9512-7. PubMed ID: 15984878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.