These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18098370)

  • 1. GPS receivers timing data processing using neural networks: optimal estimation and errors modeling.
    Mosavi MR
    Int J Neural Syst; 2007 Oct; 17(5):383-93. PubMed ID: 18098370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensor integration for satellite-based vehicular navigation using neural networks.
    Sharaf R; Noureldin A
    IEEE Trans Neural Netw; 2007 Mar; 18(2):589-94. PubMed ID: 17385643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm.
    Song J; Xue G; Kang Y
    PLoS One; 2016; 11(3):e0150005. PubMed ID: 26943638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Kalman filter-based short baseline RTK algorithm for single-frequency combination of GPS and BDS.
    Zhao S; Cui X; Guan F; Lu M
    Sensors (Basel); 2014 Aug; 14(8):15415-33. PubMed ID: 25140635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase.
    Fu L; Zhang J; Li R; Cao X; Wang J
    Sensors (Basel); 2015 Sep; 15(9):22854-73. PubMed ID: 26378533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The open service signal in space navigation data comparison of the Global Positioning System and the BeiDou Navigation Satellite System.
    Jan SS; Tao AL
    Sensors (Basel); 2014 Aug; 14(8):15182-202. PubMed ID: 25195848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integration of GPS with INS sensors for precise long-baseline kinematic positioning.
    Lee H
    Sensors (Basel); 2010; 10(10):9424-38. PubMed ID: 22163417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of neural network methods to the processing of earth observation satellite data.
    Loyola DG
    Neural Netw; 2006 Mar; 19(2):168-77. PubMed ID: 16530385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using evolutionary computation on GPS position correction.
    Lin JY
    ScientificWorldJournal; 2014; 2014():723736. PubMed ID: 24578657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable global positioning system receivers: static validity and environmental conditions.
    Duncan S; Stewart TI; Oliver M; Mavoa S; MacRae D; Badland HM; Duncan MJ
    Am J Prev Med; 2013 Feb; 44(2):e19-29. PubMed ID: 23332343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance Analysis of Relative GPS Positioning for Low-Cost Receiver-Equipped Agricultural Rovers.
    Carvalho GS; Silva FO; Pacheco MVO; Campos GAO
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The applicability of recreation-grade GNSS receiver (GPS watch, Suunto Ambit Peak 3) in a forested and an open area compared to a mapping-grade receiver (Trimble Juno T41).
    Lee T; Bettinger P; Cieszewski CJ; Gutierrez Garzon AR
    PLoS One; 2020; 15(4):e0231532. PubMed ID: 32302372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of the global positioning system in the field recovery of scattered human remains.
    Listi GA; Manhein MH; Leitner M
    J Forensic Sci; 2007 Jan; 52(1):11-5. PubMed ID: 17209903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intelligent sensor positioning and orientation through constructive neural network-embedded INS/GPS integration algorithms.
    Chiang KW; Chang HW
    Sensors (Basel); 2010; 10(10):9252-85. PubMed ID: 22163407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Enhancement of Land Vehicle Positioning Using Multiple GPS Receivers in an Urban Area.
    Song JH; Jee GI
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27754411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Indoor Positioning System Architecture Using GPS Signals.
    Xu R; Chen W; Xu Y; Ji S
    Sensors (Basel); 2015 Apr; 15(5):10074-87. PubMed ID: 25938199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of WAAS-enabled GPS for the determination of position and speed over ground.
    Witte TH; Wilson AM
    J Biomech; 2005 Aug; 38(8):1717-22. PubMed ID: 15958230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stand-alone and hybrid positioning using asynchronous pseudolites.
    Gioia C; Borio D
    Sensors (Basel); 2014 Dec; 15(1):166-93. PubMed ID: 25609041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An effective approach to improving low-cost GPS positioning accuracy in real-time navigation.
    Islam MR; Kim JM
    ScientificWorldJournal; 2014; 2014():671494. PubMed ID: 25136679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping stream habitats with a global positioning system: accuracy, precision, and comparison with traditional methods.
    Dauwalter DC; Fisher WL; Belt KC
    Environ Manage; 2006 Feb; 37(2):271-80. PubMed ID: 16391970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.