These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 181002)

  • 1. Effects of epinephrine and cyclic AMP phosphodiesterase inhibitors on the glycogen synthetic pathway and glucose content in skeletal muscle.
    Haugaard ES; Davidheiser S; Haugaard N
    Biochem Pharmacol; 1976 Feb; 25(4):439-45. PubMed ID: 181002
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of epinephrine and the cyclic AMP phosphodiesterase inhibitor SQ 20009 on glucose and glycogen metabolism in skeletal muscle.
    Davidheiser S; Haugaard ES; Haugaard N
    Biochem Pharmacol; 1979 Mar; 28(6):807-13. PubMed ID: 454479
    [No Abstract]   [Full Text] [Related]  

  • 3. Postnatal development of glycogen- and cyclic AMP-metabolizing enzymes in mammalian skeletal muscle.
    Smith PB
    Biochim Biophys Acta; 1980 Feb; 628(1):19-25. PubMed ID: 6243998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epinephrine-induced in vivo muscle glycogen depletion enhances insulin sensitivity of glucose transport.
    Nolte LA; Gulve EA; Holloszy JO
    J Appl Physiol (1985); 1994 May; 76(5):2054-8. PubMed ID: 7914887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of intracellular lithium on epinephrine-induced accumulation of cyclic AMP in skeletal muscle.
    Frazer A; Haugaard ES; Mendels J; Haugaard N
    Biochem Pharmacol; 1975 Dec; 24(24):2273-7. PubMed ID: 175800
    [No Abstract]   [Full Text] [Related]  

  • 6. Glycogen synthesis from the anomers of glucose in rat diaphragm.
    Miwa I; Fujii H; Okuda J
    Chem Pharm Bull (Tokyo); 1985 Jul; 33(7):2886-9. PubMed ID: 4085049
    [No Abstract]   [Full Text] [Related]  

  • 7. [Dependence of creatine kinase and glycogen synthetase activities of skeletal muscles on state of adenine nucleotide phosphorylation and cAMP metabolism].
    Iakovlev NN; Chagovets NR; Maksimova LV
    Ukr Biokhim Zh (1978); 1980; 52(3):293-8. PubMed ID: 6247797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of opioid narcotic drugs on energy reserves of skeletal muscle. I. Glycogen.
    Gourley DR
    Biochem Pharmacol; 1974 Feb; 23(3):489-501. PubMed ID: 4207163
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies on the effect of nicotinamide and ethylnicotinic acid on cyclic AMP phosphodiesterase from rat liver.
    Hoshi Y
    Bull Osaka Med Sch; 1975 Oct; 21(2):77-91. PubMed ID: 181108
    [No Abstract]   [Full Text] [Related]  

  • 10. Influence of tricyclic antidepressants on the adenylate cyclase-phosphodiesterase system in the rat cortex.
    Palmer GC
    Neuropharmacology; 1976 Jan; 15(1):1-7. PubMed ID: 176608
    [No Abstract]   [Full Text] [Related]  

  • 11. Glycogen content and phosphorylase activity in liver and skeletal muscle of normal and chronically morphinized rats.
    Peng CH
    Biochem Pharmacol; 1973 May; 22(10):1141-5. PubMed ID: 4707597
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of cyclic AMP pulses on adenylate cyclase and the phosphodiesterase inhibitor of D. discoideum.
    Klein C; Darmon M
    Nature; 1977 Jul; 268(5615):76-8. PubMed ID: 196203
    [No Abstract]   [Full Text] [Related]  

  • 13. Role of phosphodiesterases III and IV in the modulation of vascular cyclic AMP content by the NO/cyclic GMP pathway.
    Eckly AE; Lugnier C
    Br J Pharmacol; 1994 Oct; 113(2):445-50. PubMed ID: 7834194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amylin and epinephrine have no direct effect on glucose transport in isolated rat soleus muscle.
    Pittner RA; Wolfe-Lopez D; Young AA; Rink TJ
    FEBS Lett; 1995 May; 365(1):98-100. PubMed ID: 7774725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction of 4-alkyl derivatives of 2,6,7-trioxa-1-phosphabicyclo [2,2,2] octanes with cyclic adenosine 3',5'-monophosphate phosphodiesterase, and with cyclic adenosine 3',5'-monophosphate binding proteins.
    Coult DB; Wilkinson RG
    Biochem Pharmacol; 1977 May; 26(9):887-9. PubMed ID: 193519
    [No Abstract]   [Full Text] [Related]  

  • 16. The antitumour agent 5-(3,3-dimethyl-1-triazeno) imidazole-4-carboxamide (DTIC) inhibits rat liver cAMP phosphodiesterase and amplifies hormone effects in hepatocytes and hepatoma cells.
    Larsson PG; Haffner F; Brłnstad GO; Christoffersen T
    Br J Cancer; 1979 Nov; 40(5):768-73. PubMed ID: 228692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of insulin and epinephrine on adenosine 3',5'-phosphate and glycogen transferase in muscle.
    Craig JW; Rall TW; Larner J
    Biochim Biophys Acta; 1969 Apr; 177(2):213-9. PubMed ID: 4305363
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of 2-(4-benzyl-piperidino)-1-(4-hydroxyphenyl)-1-propranolol on adenylate cyclase and 3,5'-cyclic AMP phosphodiesterase in vitro.
    Yamashita Y; Kawai M; Hotta K
    Jpn J Pharmacol; 1976 Jun; 26(3):391-4. PubMed ID: 185445
    [No Abstract]   [Full Text] [Related]  

  • 19. The concentrations of glucose 1,6-bisphosphate and other regulatory metabolites, and the activities of enzymes of the glycogen metabolism in the perfused rabbit psoas muscle.
    Bauer HP; Birkel G; Hofer HW
    Int J Biochem; 1986; 18(1):73-7. PubMed ID: 3002883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cyclic AMP system and drug development.
    Smith CG
    Adv Enzyme Regul; 1974; 12():187-203. PubMed ID: 4156822
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.