These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 181084)

  • 1. On the location of active serines of membrane acetylcholinesterase studied by the ESR method.
    Sentjurc M; Stalc A; Zupancic AO
    Biochim Biophys Acta; 1976 Jun; 438(1):131-7. PubMed ID: 181084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ESR study of the influence of some physico-chemical factors on the conformation of a postsynaptic acetylcholinesterase.
    Sentjurc M; Stalc A; Zupancic AO; Schara M
    Biochim Biophys Acta; 1976 Apr; 429(2):421-8. PubMed ID: 4130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ESR study of the postsynatpic membrane acetylcholinesterase of Torpedo marmorata electric organ.
    Sentjurc M; Stalc A; Zupancic AO
    Mol Cell Biochem; 1976 Dec; 13(3):137-9. PubMed ID: 187929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concerning the anchoring of acetylcholinesterase in biomembranes.
    Grossmann H; Ruess KP; Liefländer M
    Experientia; 1979 Dec; 35(12):1545-6. PubMed ID: 520449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular form of acetylcholinesterase as determined by irradiation inactivation.
    Levinson SR; Ellory JC
    Biochem J; 1974 Jan; 137(1):123-5. PubMed ID: 4821394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the active sites of atropinesterase and some serine proteases by spin-labeling.
    van der Drift AC; Moes GW; van der Drift E; Rousseeuw BA
    Biochemistry; 1985 Sep; 24(20):5333-42. PubMed ID: 3000432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosteric effects of phenyltrimethylammonium and propidium on acetylcholinesterase active site.
    Stalc A; Sentjurc M; Pecar S
    Pflugers Arch; 1996; 431(6 Suppl 2):R277-8. PubMed ID: 8739372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the use of the spin labeling technique in the study of erythrocyte membranes.
    Buttefield DA; Whisnant CC; Chesnut DB
    Biochim Biophys Acta; 1976 Apr; 426(4):697-702. PubMed ID: 177059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochrome c-induced increase of motionally restricted lipid in reconstituted cytochrome c oxidase membranes, revealed by spin-label ESR spectroscopy.
    Kleinschmidt JH; Powell GL; Marsh D
    Biochemistry; 1998 Aug; 37(33):11579-85. PubMed ID: 9708994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new spin label specific for the active site of serine enzymes.
    Morrisett JD; Broomfield CA; Hackley BE
    J Biol Chem; 1969 Oct; 244(20):5758-61. PubMed ID: 4310606
    [No Abstract]   [Full Text] [Related]  

  • 11. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study.
    Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D
    Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective labeling of anionic binding sites of the acetylcholinesterase from Torpedo californica with a photoaffinity label.
    Layer P; Kiefer HR; Hucho F
    Mol Pharmacol; 1976 Nov; 12(6):958-65. PubMed ID: 1004492
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of proteolysis on the electron spin resonance spectra of maleimide spin labeled erythrocyte membrane.
    Bartosz G; Gaczyńska M
    Biochim Biophys Acta; 1985 Dec; 821(2):175-8. PubMed ID: 2998467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid-lipid and lipid-protein interactions in chromaffin granule membranes. A spin label ESR study.
    Fretten P; Morris SJ; Watts A; Marsh D
    Biochim Biophys Acta; 1980 May; 598(2):247-59. PubMed ID: 6246946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different effects of two peripheral anionic site-binding ligands on acetylcholinesterase active-site gorge topography revealed by electron paramagnetic resonance.
    Grubic Z; Stalc A; Sentjurc M; Pecar S; Gentry MK; Doctor BP
    Biochim Biophys Acta; 1995 Jun; 1249(2):155-60. PubMed ID: 7599168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ESR studies of spin-labeled membranes aligned by isopotential spin-dry ultracentrifugation: lipid-protein interactions.
    Ge M; Budil DE; Freed JH
    Biophys J; 1994 Dec; 67(6):2326-44. PubMed ID: 7535112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin label study of erythrocyte deformability I. Electron spin resonance spectral change under shear flow.
    Noji S; Inoue F; Kon H
    Blood Cells; 1981; 7(2):401-15. PubMed ID: 6271312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ESR probing of macromolecules: spin-labeling of the active sites of the proteolytic serine enzymes.
    Hsia JC; Kosman DJ; Piette LH
    Arch Biochem Biophys; 1972 Apr; 149(2):441-51. PubMed ID: 4353583
    [No Abstract]   [Full Text] [Related]  

  • 19. Reconstitution of acetylcholinesterase activity from electroplax membrane fragments into phosphatidylcholine vesicles.
    Ochoa EL
    FEBS Lett; 1978 May; 89(2):317-20. PubMed ID: 658423
    [No Abstract]   [Full Text] [Related]  

  • 20. Saturation transfer electron spin resonance of Ca2(+)-ATPase covalently spin-labeled with beta-substituted vinyl ketone- and maleimide-nitroxide derivatives. Effects of segmental motion and labeling levels.
    Horváth LI; Dux L; Hankovszky HO; Hideg K; Marsh D
    Biophys J; 1990 Jul; 58(1):231-41. PubMed ID: 2166598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.