These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 18111881)

  • 1. Fermentation ability of ingesta from normal and atonic bovine rumens.
    STONE EC
    Am J Vet Res; 1949 Jan; 10(34):26-9. PubMed ID: 18111881
    [No Abstract]   [Full Text] [Related]  

  • 2. The influence of the ash content of the rumen ingesta on the hydrogen ion concentration in the bovine rumen.
    CASON JL; RUBY ES; STALLCUP OT
    J Nutr; 1954 Mar; 52(3):457-65. PubMed ID: 13143445
    [No Abstract]   [Full Text] [Related]  

  • 3. Evaluation of health and ruminal variables during adaptation to grain-based diets in beef cattle.
    Leedle JA; Coe ML; Frey RA
    Am J Vet Res; 1995 Jul; 56(7):885-92. PubMed ID: 7574156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of orally administered therapeutic drugs on the fermentation processes in the rumen fluid of ruminating cattle (in vitro). 6. Copper sulfate].
    Odenkirchen S; Höltershinken M; Scholz H
    Dtsch Tierarztl Wochenschr; 1994 Jan; 101(1):16-8. PubMed ID: 8131726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digestibility, ruminal fermentation, ingesta kinetics and nitrogen utilisation in dairy cows fed diets based on silage of a brown midrib or a standard maize hybrid.
    Gorniak T; Hüther L; Meyer U; Lebzien P; Breves G; Südekum KH; Dänicke S
    Arch Anim Nutr; 2014; 68(2):143-58. PubMed ID: 24646152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between Euphorbia esula toxins and bovine ruminal microbes.
    Kronberg SL; Halaweish FT; Hubert MB; Weimer PJ
    J Chem Ecol; 2006 Jan; 32(1):15-28. PubMed ID: 16525867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows.
    Shen JS; Chai Z; Song LJ; Liu JX; Wu YM
    J Dairy Sci; 2012 Oct; 95(10):5978-84. PubMed ID: 22921624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dietary changes and yeast culture (Saccharomyces cerevisiae) on rumen microbial fermentation of Holstein heifers.
    Moya D; Calsamiglia S; Ferret A; Blanch M; Fandiño JI; Castillejos L; Yoon I
    J Anim Sci; 2009 Sep; 87(9):2874-81. PubMed ID: 19542509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and fermentation characteristics of strains of Butyrivibrio from ruminal ingesta.
    LEE HC; MOORE WE
    J Bacteriol; 1959 Jun; 77(6):741-7. PubMed ID: 13664653
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of trace minerals and starch on digestibility and rumen fermentation in diets for dairy heifers.
    Pino F; Heinrichs AJ
    J Dairy Sci; 2016 Apr; 99(4):2797-2810. PubMed ID: 26851846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of molasses and monensin in alfalfa hay- or corn silage-based diets on rumen fermentation, total tract digestibility, and milk production by Holstein cows.
    Oelker ER; Reveneau C; Firkins JL
    J Dairy Sci; 2009 Jan; 92(1):270-85. PubMed ID: 19109286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Feeding of rumen contents from slaughter cattle. 3. Use of rumen contents in the feeding of swine].
    Meyer H; Coenen M; Schünemann C
    Berl Munch Tierarztl Wochenschr; 1984 Jul; 97(7):239-45. PubMed ID: 6487251
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of mucin and its carbohydrate constituents on Escherichia coli O157 growth in batch culture fermentations with ruminal or fecal microbial inoculum.
    Fox JT; Drouillard JS; Shi X; Nagaraja TG
    J Anim Sci; 2009 Apr; 87(4):1304-13. PubMed ID: 19028855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rumen conditions that predispose cattle to pasture bloat.
    Majak W; Howarth RE; Cheng KJ; Hall JW
    J Dairy Sci; 1983 Aug; 66(8):1683-8. PubMed ID: 6619348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo indices for predicting acidosis risk of grains in cattle: Comparison with in vitro methods.
    Lean IJ; Golder HM; Black JL; King R; Rabiee AR
    J Anim Sci; 2013 Jun; 91(6):2823-35. PubMed ID: 23482574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rumen protozoa and methanogenesis: not a simple cause-effect relationship.
    Morgavi DP; Martin C; Jouany JP; Ranilla MJ
    Br J Nutr; 2012 Feb; 107(3):388-97. PubMed ID: 21762544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows.
    Tekippe JA; Hristov AN; Heyler KS; Cassidy TW; Zheljazkov VD; Ferreira JF; Karnati SK; Varga GA
    J Dairy Sci; 2011 Oct; 94(10):5065-79. PubMed ID: 21943758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows.
    Iqbal S; Zebeli Q; Mazzolari A; Bertoni G; Dunn SM; Yang WZ; Ametaj BN
    J Dairy Sci; 2009 Dec; 92(12):6023-32. PubMed ID: 19923605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prolonged, moderate nutrient restriction in beef cattle results in persistently elevated circulating ghrelin concentrations.
    Wertz-Lutz AE; Daniel JA; Clapper JA; Trenkle A; Beitz DC
    J Anim Sci; 2008 Mar; 86(3):564-75. PubMed ID: 18156362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of species-diverse high-alpine forage on in vitro ruminal fermentation when used as donor cow's feed or directly incubated.
    Khiaosa-Ard R; Soliva CR; Kreuzer M; Leiber F
    Animal; 2012 Nov; 6(11):1764-73. PubMed ID: 22717263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.