These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1811471)

  • 41. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit.
    Bernal MA; Bordage MC; Brown JMC; Davídková M; Delage E; El Bitar Z; Enger SA; Francis Z; Guatelli S; Ivanchenko VN; Karamitros M; Kyriakou I; Maigne L; Meylan S; Murakami K; Okada S; Payno H; Perrot Y; Petrovic I; Pham QT; Ristic-Fira A; Sasaki T; Štěpán V; Tran HN; Villagrasa C; Incerti S
    Phys Med; 2015 Dec; 31(8):861-874. PubMed ID: 26653251
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A potential application to the study of microscopic energy deposition in a solid by means of heavy charged-particle induced photochromic alterations in a tissue-equivalent matrix.
    Emfietzoglou D; Moscovitch M
    Phys Med Biol; 1999 Jan; 44(1):207-21. PubMed ID: 10071884
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Semi-empirical inelastic cross sections for electron transport in liquid water.
    Emfietzoglou D
    Radiat Prot Dosimetry; 2002; 99(1-4):39-46. PubMed ID: 12194336
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Considerations and limitations of fast Monte Carlo electron transport in radiation therapy based on precalculated data.
    Jabbari K; Keall P; Seuntjens J
    Med Phys; 2009 Feb; 36(2):530-40. PubMed ID: 19291992
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra.
    Lazarakis P; Bug MU; Gargioni E; Guatelli S; Rabus H; Rosenfeld AB
    Phys Med Biol; 2012 Mar; 57(5):1231-50. PubMed ID: 22330641
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Features of PHITS and its application to medical physics].
    Hashimoto S; Niita K; Matsuda N; Iwamoto Y; Iwase H; Sato T; Noda S; Ogawa T; Nakashima H; Fukahori T; Furuta T; Chiba S
    Igaku Butsuri; 2013; 33(2):88-95. PubMed ID: 24575621
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Accurate condensed history Monte Carlo simulation of electron transport. II. Application to ion chamber response simulations.
    Kawrakow I
    Med Phys; 2000 Mar; 27(3):499-513. PubMed ID: 10757602
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimized neuron models for estimation of charged particle energy deposition in hippocampus.
    Batmunkh M; Aksenova SV; Bayarchimeg L; Bugay AN; Lkhagva O
    Phys Med; 2019 Jan; 57():88-94. PubMed ID: 30738537
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Developments and trends in bioequivalent dosimetry.
    Hajek M
    Radiat Prot Dosimetry; 2015 Apr; 164(1-2):65-9. PubMed ID: 25183836
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-speed evaluation of track-structure Monte Carlo electron transport simulations.
    Pasciak AS; Ford JR
    Phys Med Biol; 2008 Oct; 53(19):5539-53. PubMed ID: 18780958
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low-energy electron and positron transport in gases and soft-condensed systems of biological relevance.
    White RD; Tattersall W; Boyle G; Robson RE; Dujko S; Petrovic ZLj; Bankovic A; Brunger MJ; Sullivan JP; Buckman SJ; Garcia G
    Appl Radiat Isot; 2014 Jan; 83 Pt B():77-85. PubMed ID: 23395226
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak.
    González-Muñoz G; Tilly N; Fernández-Varea JM; Ahnesjö A
    Phys Med Biol; 2008 Jun; 53(11):2857-75. PubMed ID: 18460751
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnetic field tracking with MCNP5.
    Bul JS; Hughes HG; Walstrom PL; Zumbro JD; Mokhov NV
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):307-11. PubMed ID: 16604650
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling energy deposition in trabecular spongiosa using the Monte Carlo code PENELOPE.
    Gersh JA; Dingfelder M; Toburen LH
    Health Phys; 2007 Jul; 93(1):47-59. PubMed ID: 17563492
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigating energy deposition in glandular tissues for mammography using multiscale Monte Carlo simulations.
    Oliver PAK; Thomson RM
    Med Phys; 2019 Mar; 46(3):1426-1436. PubMed ID: 30657190
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interface effects in the Monte Carlo simulation of electron tracks.
    Smyth VG
    Med Phys; 1986; 13(2):196-200. PubMed ID: 3702816
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DPM as a radiation transport engine for PRIMO.
    Rodriguez M; Sempau J; Bäumer C; Timmermann B; Brualla L
    Radiat Oncol; 2018 Dec; 13(1):256. PubMed ID: 30591056
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inclusion of coherence in Monte Carlo models for simulation of x-ray phase contrast imaging.
    Cipiccia S; Vittoria FA; Weikum M; Olivo A; Jaroszynski DA
    Opt Express; 2014 Sep; 22(19):23480-8. PubMed ID: 25321817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. WHAT ROLES FOR TRACK-STRUCTURE AND MICRODOSIMETRY IN THE ERA OF -omics AND SYSTEMS BIOLOGY?
    Baiocco G; Babini G; Barbieri S; Morini J; Friedland W; Villagrasa C; Rabus H; Ottolenghi A
    Radiat Prot Dosimetry; 2019 May; 183(1-2):22-25. PubMed ID: 30535167
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calculation of heavy-ion tracks in liquid water.
    Hamm RN; Turner JE; Ritchie RH; Wright HA
    Radiat Res Suppl; 1985; 8():S20-6. PubMed ID: 3003783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.