These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 1811933)

  • 1. Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos.
    Papalopulu N; Clarke JD; Bradley L; Wilkinson D; Krumlauf R; Holder N
    Development; 1991 Dec; 113(4):1145-58. PubMed ID: 1811933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinoic acid modifies development of the midbrain-hindbrain border and affects cranial ganglion formation in zebrafish embryos.
    Holder N; Hill J
    Development; 1991 Dec; 113(4):1159-70. PubMed ID: 1811934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinoic acid stage-dependently alters the migration pattern and identity of hindbrain neural crest cells.
    Lee YM; Osumi-Yamashita N; Ninomiya Y; Moon CK; Eriksson U; Eto K
    Development; 1995 Mar; 121(3):825-37. PubMed ID: 7720586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development.
    Hernandez RE; Putzke AP; Myers JP; Margaretha L; Moens CB
    Development; 2007 Jan; 134(1):177-87. PubMed ID: 17164423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin A deficiency results in the dose-dependent acquisition of anterior character and shortening of the caudal hindbrain of the rat embryo.
    White JC; Highland M; Kaiser M; Clagett-Dame M
    Dev Biol; 2000 Apr; 220(2):263-84. PubMed ID: 10753515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhombomere transplantation repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein.
    Kuratani SC; Eichele G
    Development; 1993 Jan; 117(1):105-17. PubMed ID: 7900983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independent roles for retinoic acid in segmentation and neuronal differentiation in the zebrafish hindbrain.
    Linville A; Gumusaneli E; Chandraratna RA; Schilling TF
    Dev Biol; 2004 Jun; 270(1):186-99. PubMed ID: 15136149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An early Fgf signal required for gene expression in the zebrafish hindbrain primordium.
    Roy NM; Sagerström CG
    Brain Res Dev Brain Res; 2004 Jan; 148(1):27-42. PubMed ID: 14757516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of thyroid hormone receptor alpha 1 during zebrafish embryogenesis disrupts hindbrain patterning and implicates retinoic acid receptors in the control of hox gene expression.
    Essner JJ; Johnson RG; Hackett PB
    Differentiation; 1999 Jul; 65(1):1-11. PubMed ID: 10448709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel vertebrate svp-related nuclear receptor is expressed as a step gradient in developing rhombomeres and is affected by retinoic acid.
    Fjose A; Weber U; Mlodzik M
    Mech Dev; 1995 Aug; 52(2-3):233-46. PubMed ID: 8541212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous retinoic acid causes specific alterations in the development of the midbrain and hindbrain of the zebrafish embryo including positional respecification of the Mauthner neuron.
    Hill J; Clarke JD; Vargesson N; Jowett T; Holder N
    Mech Dev; 1995 Mar; 50(1):3-16. PubMed ID: 7605750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos.
    Ruiz i Altaba A; Jessell TM
    Development; 1991 Aug; 112(4):945-58. PubMed ID: 1682132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo.
    Conlon RA; Rossant J
    Development; 1992 Oct; 116(2):357-68. PubMed ID: 1363087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain.
    Murakami Y; Pasqualetti M; Takio Y; Hirano S; Rijli FM; Kuratani S
    Development; 2004 Mar; 131(5):983-95. PubMed ID: 14973269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid.
    Maves L; Kimmel CB
    Dev Biol; 2005 Sep; 285(2):593-605. PubMed ID: 16102743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity.
    Marshall H; Nonchev S; Sham MH; Muchamore I; Lumsden A; Krumlauf R
    Nature; 1992 Dec 24-31; 360(6406):737-41. PubMed ID: 1361214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinoic acid synthesis and hindbrain patterning in the mouse embryo.
    Niederreither K; Vermot J; Schuhbaur B; Chambon P; Dollé P
    Development; 2000 Jan; 127(1):75-85. PubMed ID: 10654602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos.
    Chen Y; Pollet N; Niehrs C; Pieler T
    Mech Dev; 2001 Mar; 101(1-2):91-103. PubMed ID: 11231062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal development of the sinuatrial venous valve and posterior hindbrain may contribute to late fetal resorption of vitamin A-deficient rat embryos.
    White JC; Highland M; Clagett-Dame M
    Teratology; 2000 Dec; 62(6):374-84. PubMed ID: 11091359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pou-2--a zebrafish gene active during cleavage stages and in the early hindbrain.
    Hauptmann G; Gerster T
    Mech Dev; 1995 May; 51(1):127-38. PubMed ID: 7669688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.