BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 1812062)

  • 1. Peptide transport across the animal cell plasma membrane: recent developments.
    Ganapathy V; Miyamoto Y; Tiruppathi C; Leibach FH
    Indian J Biochem Biophys; 1991; 28(5-6):317-23. PubMed ID: 1812062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driving force for peptide transport in mammalian intestine and kidney.
    Ganapathy V; Miyamoto Y; Leibach FH
    Beitr Infusionther Klin Ernahr; 1987; 17():54-68. PubMed ID: 3318802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional expression and dietary regulation of rat small intestinal peptide and amino acid transporter mRNAs.
    Erickson RH; Gum JR; Lindstrom MM; McKean D; Kim YS
    Biochem Biophys Res Commun; 1995 Nov; 216(1):249-57. PubMed ID: 7488096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introduction. Membrane transport of peptides.
    Matthews DM
    Ciba Found Symp; 1977; (50):5-14. PubMed ID: 244390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine.
    Li Q; Manolescu A; Ritzel M; Yao S; Slugoski M; Young JD; Chen XZ; Cheeseman CI
    Am J Physiol Gastrointest Liver Physiol; 2004 Jul; 287(1):G236-42. PubMed ID: 15033637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney.
    Saito H; Okuda M; Terada T; Sasaki S; Inui K
    J Pharmacol Exp Ther; 1995 Dec; 275(3):1631-7. PubMed ID: 8531138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of peptide transport.
    Matthews DM
    Beitr Infusionther Klin Ernahr; 1987; 17():6-53. PubMed ID: 3318803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health.
    Gilbert ER; Wong EA; Webb KE
    J Anim Sci; 2008 Sep; 86(9):2135-55. PubMed ID: 18441086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of solute carrier 7A4 (SLC7A4) in the plasma membrane is not sufficient to mediate amino acid transport activity.
    Wolf S; Janzen A; Vékony N; Martiné U; Strand D; Closs EI
    Biochem J; 2002 Jun; 364(Pt 3):767-75. PubMed ID: 12049641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione transport in immortalized HLE cells and expression of transport in HLE cell poly(A)+ RNA-injected Xenopus laevis oocytes.
    Kannan R; Bao Y; Mittur A; Andley UP; Kaplowitz N
    Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1379-86. PubMed ID: 9660486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General discussion of peptide transport in bacteria and the mammalian gut.
    Ciba Found Symp; 1971; ():145-50. PubMed ID: 5212097
    [No Abstract]   [Full Text] [Related]  

  • 12. Proton-coupled solute transport in the animal cell plasma membrane.
    Ganapathy V; Leibach FH
    Curr Opin Cell Biol; 1991 Aug; 3(4):695-701. PubMed ID: 1663375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The sodium-potassium-chloride cotransport of the cell membrane].
    Urazaev AKh
    Usp Fiziol Nauk; 1998; 29(2):12-38. PubMed ID: 9659682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and function of the amino acid transporter PAT1 (slc36a1) from rabbit and discrimination between transport via PAT1 and system IMINO in renal brush-border membrane vesicles.
    Miyauchi S; Abbot EL; Zhuang L; Subramanian R; Ganapathy V; Thwaites DT
    Mol Membr Biol; 2005; 22(6):549-59. PubMed ID: 16373326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3.
    Katai K; Miyamoto K; Kishida S; Segawa H; Nii T; Tanaka H; Tani Y; Arai H; Tatsumi S; Morita K; Taketani Y; Takeda E
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):705-12. PubMed ID: 10527952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning, functional characterization, tissue distribution, and chromosomal localization of a human, small intestinal sodium-phosphate (Na+-Pi) transporter (SLC34A2).
    Xu H; Bai L; Collins JF; Ghishan FK
    Genomics; 1999 Dec; 62(2):281-4. PubMed ID: 10610722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2.
    Fei YJ; Liu W; Prasad PD; Kekuda R; Oblak TG; Ganapathy V; Leibach FH
    Biochemistry; 1997 Jan; 36(2):452-60. PubMed ID: 9003198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.
    Villa-Bellosta R; Sorribas V
    Toxicol Appl Pharmacol; 2008 Oct; 232(1):125-34. PubMed ID: 18586044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Na+ in the asymmetric paracellular transport of 4-phenylazobenzyloxycarbonyl-L-Pro-L-Leu-Gly-L-Pro-D-Arg across rabbit colonic segments and Caco-2 cell monolayers.
    Yen WC; Lee VH
    J Pharmacol Exp Ther; 1995 Oct; 275(1):114-9. PubMed ID: 7562538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Trans-sorption as an important mechanism of molecular transport in biological systems].
    Ugolev AM; Gusev VM; Gruzdkov AA
    Fiziol Zh SSSR Im I M Sechenova; 1992 Aug; 78(8):38-44. PubMed ID: 1335924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.