These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 1812155)

  • 1. Hypoxia reduces oxygen consumption of fetal skeletal muscle cells in monolayer culture.
    Braems G; Jensen A
    J Dev Physiol; 1991 Oct; 16(4):209-15. PubMed ID: 1812155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interdependence of arterial PO2 and O2 consumption in the fetal sheep.
    Asakura H; Ball KT; Power GG
    J Dev Physiol; 1990 Apr; 13(4):205-13. PubMed ID: 2277185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen availability determines oxygen consumption of fetal skeletal muscle cells in monolayer culture preliminary report.
    Braems G; Jensen A
    J Perinat Med; 1991; 19 Suppl 1():358-63. PubMed ID: 1779388
    [No Abstract]   [Full Text] [Related]  

  • 4. Fetal cerebral metabolism: the influence of asphyxia and other factors.
    Parer JT
    J Perinatol; 1994; 14(5):376-85. PubMed ID: 7830153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic changes in organ blood flow and oxygen consumption during acute asphyxia in fetal sheep.
    Jensen A; Hohmann M; Künzel W
    J Dev Physiol; 1987 Dec; 9(6):543-59. PubMed ID: 3443726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between fetal arterial oxygen saturation and heart and skeletal muscle myoglobin concentrations in the ovine fetus.
    Guiang SF; Widness JA; Flanagan KB; Schmidt RL; Radmer WJ; Georgieff MK
    J Dev Physiol; 1993 Mar; 19(3):99-104. PubMed ID: 8089441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of acute asphyxia on brain energy metabolism in fetal guinea pigs near term.
    Berger R; Jensen A; Krieglstein J; Steigelmann JP
    J Dev Physiol; 1991 Jul; 16(1):9-11. PubMed ID: 1779130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Continuous measurement of peripheral oxygen availability in skeletal muscle of patients with infection].
    Boekstegers P; Weidenhöfer S; Kapsner T; Werdan K
    Infusionsther Transfusionsmed; 1993 Apr; 20 Suppl 1():21-8; discussion 28. PubMed ID: 8499747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral oxygen consumption during asphyxia in fetal sheep.
    Field DR; Parer JT; Auslender RA; Cheek DB; Baker W; Johnson J
    J Dev Physiol; 1990 Sep; 14(3):131-7. PubMed ID: 2129242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of hypoxia on glucose turnover in the fetal sheep.
    Jones CT; Ritchie JW; Walker D
    J Dev Physiol; 1983 Aug; 5(4):223-35. PubMed ID: 6630922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal oxygen and lactate metabolism in hemorrhagic shock. An experimental study.
    Nelimarkka O
    Acta Chir Scand Suppl; 1984; 518():1-44. PubMed ID: 6592913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of severe reduction in maternal placental blood flow on blood flow distribution in the sheep fetus.
    Reid DL; Parer JT; Williams K; Darr D; Phernetton TM; Rankin JH
    J Dev Physiol; 1991 Mar; 15(3):183-8. PubMed ID: 1940144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum aerobic performance in lines of Mus selected for high wheel-running activity: effects of selection, oxygen availability and the mini-muscle phenotype.
    Rezende EL; Garland T; Chappell MA; Malisch JL; Gomes FR
    J Exp Biol; 2006 Jan; 209(Pt 1):115-27. PubMed ID: 16354783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redistribution of fetal circulation during repeated asphyxia in sheep: effects on skin blood flow, transcutaneous PO2, and plasma catecholamines.
    Jensen A; Hohmann M; Künzel W
    J Dev Physiol; 1987 Feb; 9(1):41-55. PubMed ID: 3559064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fetal asphyxia stimulates an increase in fetal plasma catecholamines and [Met]-enkephalin-arg6-phe7 in the late-gestation sheep fetus.
    Coulter CL; Giraud AS; Hooper SB; Parker L; McMillen IC
    J Dev Physiol; 1990 Nov; 14(5):267-72. PubMed ID: 2129244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen consumption of calvarial bone cells in vitro.
    Schirrmacher K; Lauterbach S; Bingmann D
    J Orthop Res; 1997 Jul; 15(4):558-62. PubMed ID: 9379265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fetal cerebral oxygenation: the role of maternal hyperoxia with supplemental CO2 in sheep.
    Tomimatsu T; Peña JP; Longo LD
    Am J Obstet Gynecol; 2007 Apr; 196(4):359.e1-5. PubMed ID: 17403422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low oxygen reduces the modulation to an oxidative phenotype in monolayer-expanded chondrocytes.
    Heywood HK; Lee DA
    J Cell Physiol; 2010 Jan; 222(1):248-53. PubMed ID: 19795395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of restriction of placental growth on oxygen delivery to and consumption by the pregnant uterus and fetus.
    Owens JA; Falconer J; Robinson JS
    J Dev Physiol; 1987 Apr; 9(2):137-50. PubMed ID: 3598148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of microvascular oxygen pressures during recovery in rat fast-twitch muscle of differing oxidative capacity.
    McDonough P; Behnke BJ; Padilla DJ; Musch TI; Poole DC
    Exp Physiol; 2007 Jul; 92(4):731-8. PubMed ID: 17449542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.