BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 181263)

  • 41. Coenzyme binding and co-operativity in D-glyceraldehyde 3-phosphate dehydrogenase.
    Biesecker G; Wonacott AJ
    Biochem Soc Trans; 1977; 5(3):647-52. PubMed ID: 198263
    [No Abstract]   [Full Text] [Related]  

  • 42. Structural basis for the extreme thermostability of D-glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima: analysis based on homology modelling.
    Szilágyi A; Závodszky P
    Protein Eng; 1995 Aug; 8(8):779-89. PubMed ID: 8637847
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The reaction of glyceraldehydephosphate dehydrogenase with NAD+.
    de Vijlder JJ; Slater EC
    Biochim Biophys Acta; 1967 Jan; 132(1):207-9. PubMed ID: 4291573
    [No Abstract]   [Full Text] [Related]  

  • 44. Affinity chromatography on immobilised nucleotides. Some applications to the purification of thermophilic dehydrogenases and kinases.
    Comer MJ; Craven DB; Harvey MJ; Atkinson A; Dean PD
    Eur J Biochem; 1975 Jun; 55(1):201-9. PubMed ID: 240692
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A thermostable sequence-specific endonuclease from Thermus aquaticus.
    Sato S; Hutchinson CA; Harris JI
    Proc Natl Acad Sci U S A; 1977 Feb; 74(2):542-6. PubMed ID: 265518
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation and active-site specific properties of sturgeon muscle glyceraldehyde-3-phoshate dehydrogenase.
    Seydoux F; Bernhard S; Pfenninger O; Payne M; Malhotra OP
    Biochemistry; 1973 Oct; 12(21):4290-300. PubMed ID: 4355559
    [No Abstract]   [Full Text] [Related]  

  • 47. Superoxide dismutase from Thermus aquaticus. Isolation and characterisation of manganese and apo enzymes.
    Sato S; Harris JI
    Eur J Biochem; 1977 Mar; 73(2):373-81. PubMed ID: 14828
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle.
    Scheek RM; Slater EC
    Methods Enzymol; 1982; 89 Pt D():305-9. PubMed ID: 7144575
    [No Abstract]   [Full Text] [Related]  

  • 49. Determinants of coenzyme specificity in glyceraldehyde-3-phosphate dehydrogenase: role of the acidic residue in the fingerprint region of the nucleotide binding fold.
    Clermont S; Corbier C; Mely Y; Gerard D; Wonacott A; Branlant G
    Biochemistry; 1993 Sep; 32(38):10178-84. PubMed ID: 8399144
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A crystallographic comparison between mutated glyceraldehyde-3-phosphate dehydrogenases from Bacillus stearothermophilus complexed with either NAD+ or NADP+.
    Didierjean C; Rahuel-Clermont S; Vitoux B; Dideberg O; Branlant G; Aubry A
    J Mol Biol; 1997 May; 268(4):739-59. PubMed ID: 9175858
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphorescence properties of Trp-84 and Trp-310 in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.
    Gabellieri E; Strambini GB
    Biophys Chem; 1989 Jul; 33(3):257-64. PubMed ID: 2804244
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The structure of glyceraldehyde 3-phosphate dehydrogenase from Alcaligenes xylosoxidans at 1.7 A resolution.
    Antonyuk SV; Eady RR; Strange RW; Hasnain SS
    Acta Crystallogr D Biol Crystallogr; 2003 May; 59(Pt 5):835-42. PubMed ID: 12777799
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Complete amino-acid sequence of glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima.
    Schultes V; Deutzmann R; Jaenicke R
    Eur J Biochem; 1990 Aug; 192(1):25-31. PubMed ID: 2401296
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Heat denaturation of lactate dehydrogenase (L-lactate: NAD-oxidoreductase, KF 1.1.1.27) and D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD-oxidoreductase, KF 1.2.1.12) from rabbit muscle].
    Kurganov BI; Agatova AI
    Biofizika; 1965; 10(5):755-62. PubMed ID: 4288382
    [No Abstract]   [Full Text] [Related]  

  • 55. Glyceraldehyde-3-phosphate dehydrogenases from human erythrocytes.
    Oguchi M
    J Biochem; 1970 Oct; 68(4):427-39. PubMed ID: 4321245
    [No Abstract]   [Full Text] [Related]  

  • 56. Cloning and sequencing of the genes encoding glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase (gap operon) from mesophilic Bacillus megaterium: comparison with corresponding sequences from thermophilic Bacillus stearothermophilus.
    Schläpfer BS; Zuber H
    Gene; 1992 Dec; 122(1):53-62. PubMed ID: 1452037
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inactivation and conformation changes of the glycated and non-glycated D-glyceraldehyde-3-phosphate dehydrogenase during guanidine-HCl denaturation.
    He RQ; Li YG; Wu XQ; Li L
    Biochim Biophys Acta; 1995 Nov; 1253(1):47-56. PubMed ID: 7492598
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Substituting selenocysteine for active site cysteine 149 of phosphorylating glyceraldehyde 3-phosphate dehydrogenase reveals a peroxidase activity.
    Boschi-Muller S; Muller S; Van Dorsselaer A; Böck A; Branlant G
    FEBS Lett; 1998 Nov; 439(3):241-5. PubMed ID: 9845330
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of NAD+ binding on the luminescence of tryptophans 84 and 310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.
    Gabellieri E; Rahuel-Clermont S; Branlant G; Strambini GB
    Biochemistry; 1996 Sep; 35(38):12549-59. PubMed ID: 8823192
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of the thermostability of enolases.
    Stellwagen E; Barnes LD
    Experientia Suppl; 1976; 26():223-7. PubMed ID: 939273
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.