These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1812743)

  • 21. An engineered retroviral proteinase from myeloblastosis associated virus acquires pH dependence and substrate specificity of the HIV-1 proteinase.
    Konvalinka J; Horejsí M; Andreánsky M; Novek P; Pichová I; Bláha I; Fábry M; Sedlácek J; Foundling S; Strop P
    EMBO J; 1992 Mar; 11(3):1141-4. PubMed ID: 1547777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [HIV-1 proteinase mutant with an altered region of the active center].
    Dergousova NI; Rumsh LD; Andreeva NS
    Mol Biol (Mosk); 1998; 32(4):678-85. PubMed ID: 9785574
    [No Abstract]   [Full Text] [Related]  

  • 23. Real-time measurements of dark substrate catalysis.
    Xie D; Suvorov L; Erickson JW; Gulnik AS
    Protein Sci; 1999 Nov; 8(11):2460-4. PubMed ID: 10595550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of the substrate specificity of the human T-cell leukemia virus and human immunodeficiency virus proteinases.
    Tözsér J; Zahuczky G; Bagossi P; Louis JM; Copeland TD; Oroszlan S; Harrison RW; Weber IT
    Eur J Biochem; 2000 Oct; 267(20):6287-95. PubMed ID: 11012683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substitutions at the P2' site of gag p17-p24 affect cleavage efficiency by HIV-1 protease.
    Margolin N; Heath W; Osborne E; Lai M; Vlahos C
    Biochem Biophys Res Commun; 1990 Mar; 167(2):554-60. PubMed ID: 2182016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of amino acid residues of the retroviral aspartic proteinases important for substrate specificity and catalytic efficiency.
    Cameron CE; Burstein H; Bizub-Bender D; Ridky T; Weber IT; Wlodawer A; Skalka AM; Leis J
    Adv Exp Med Biol; 1995; 362():399-406. PubMed ID: 8540349
    [No Abstract]   [Full Text] [Related]  

  • 27. Cloning, expression and kinetic characterization of the feline immunodeficiency virus proteinase.
    Farmerie WG; Goodenow MM; Dunn BM
    Adv Exp Med Biol; 1991; 306():511-3. PubMed ID: 1667452
    [No Abstract]   [Full Text] [Related]  

  • 28. A microtiter colorimetric assay for the HIV-1 protease.
    Stebbins J; Debouck C
    Anal Biochem; 1997 Jun; 248(2):246-50. PubMed ID: 9177750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro processing of HIV-1 nucleocapsid protein by the viral proteinase: effects of amino acid substitutions at the scissile bond in the proximal zinc finger sequence.
    Tözsér J; Shulenin S; Louis JM; Copeland TD; Oroszlan S
    Biochemistry; 2004 Apr; 43(14):4304-12. PubMed ID: 15065874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monomeric human cathepsin E.
    Fowler SD; Kay J; Dunn BM; Tatnell PJ
    FEBS Lett; 1995 Jun; 366(1):72-4. PubMed ID: 7789521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Naturally occurring amino acid polymorphisms in human immunodeficiency virus type 1 (HIV-1) Gag p7(NC) and the C-cleavage site impact Gag-Pol processing by HIV-1 protease.
    Goodenow MM; Bloom G; Rose SL; Pomeroy SM; O'Brien PO; Perez EE; Sleasman JW; Dunn BM
    Virology; 2002 Jan; 292(1):137-49. PubMed ID: 11878916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An E. coli expression system which detoxifies the HIV protease.
    Korant BD; Rizzo CJ
    Biomed Biochim Acta; 1991; 50(4-6):643-6. PubMed ID: 1801736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of kinetic properties of native and recombinant human cathepsin D.
    Scarborough PE; Richo GR; Kay J; Conner GE; Dunn BM
    Adv Exp Med Biol; 1991; 306():343-7. PubMed ID: 1812725
    [No Abstract]   [Full Text] [Related]  

  • 34. Expression, characterisation and mutagenesis of the aspartic proteinase from equine infectious anaemia virus.
    Powell DJ; Bur D; Wlodawer A; Gustchina A; Payne SL; Dunn BM; Kay J
    Eur J Biochem; 1996 Oct; 241(2):664-74. PubMed ID: 8917470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A formulation for correlating properties of peptides and its application to predicting human immunodeficiency virus protease-cleavable sites in proteins.
    Chou JJ
    Biopolymers; 1993 Sep; 33(9):1405-14. PubMed ID: 8400033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substrate specificity of the human (type 1) and simian immunodeficiency virus proteases.
    Debouck C
    Adv Exp Med Biol; 1991; 306():407-15. PubMed ID: 1812737
    [No Abstract]   [Full Text] [Related]  

  • 37. The effect of substrates on the kinetics and the in vivo threshold activity of mutant HIV-1 proteases.
    Ermolieff J; Lin X; Tang J
    Adv Exp Med Biol; 1998; 436():47-51. PubMed ID: 9561198
    [No Abstract]   [Full Text] [Related]  

  • 38. Identification of a human immunodeficiency virus-1 protease cleavage site within the 66,000 Dalton subunit of reverse transcriptase.
    Graves MC; Meidel MC; Pan YC; Manneberg M; Lahm HW; Grüninger-Leitch F
    Biochem Biophys Res Commun; 1990 Apr; 168(1):30-6. PubMed ID: 1691640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate -- interactions with frequently occurring glutamic acid residue at P2' position of substrates.
    Weber IT; Wu J; Adomat J; Harrison RW; Kimmel AR; Wondrak EM; Louis JM
    Eur J Biochem; 1997 Oct; 249(2):523-30. PubMed ID: 9370363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cleavage of the intermediate filament subunit protein vimentin by HIV-1 protease: utilization of a novel cleavage site and identification of higher order polymers of pepstatin A.
    Shoeman RL; Höner B; Stoller TJ; Mothes E; Kesselmeier C; Traub P; Graves MC
    Adv Exp Med Biol; 1991; 306():533-7. PubMed ID: 1812754
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.