These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1812750)

  • 1. Monoclonal and polyclonal antibodies: reagents for studying HIV-1 proteinase variants.
    Stoller TJ; Lim JJ; Woltizky BA; Graves MC
    Adv Exp Med Biol; 1991; 306():507-10. PubMed ID: 1812750
    [No Abstract]   [Full Text] [Related]  

  • 2. Cloning, expression, and mutagenesis of SIVmac proteinase in E. coli.
    Corr BR; Richardson M; Wilderspin AF
    Biochem Soc Trans; 1992 May; 20(2):160S. PubMed ID: 1397549
    [No Abstract]   [Full Text] [Related]  

  • 3. Anti-HIV proteinase monoclonal antibody F11.2.32 that inhibits enzyme activity.
    Stouracova R; Lescar J; Brynda J; Riottot MM; Chitarra V; Fabry M; Horejsi M; Rezacova P; Bentley G; Sedlacek J
    Gen Physiol Biophys; 1998 Jun; 17 Suppl 1():6-8. PubMed ID: 9789741
    [No Abstract]   [Full Text] [Related]  

  • 4. Time dependent heterodimer formation leads to inhibition of HIV protease activity.
    Babé LM; Craik CS
    Adv Exp Med Biol; 1991; 306():543-7. PubMed ID: 1812756
    [No Abstract]   [Full Text] [Related]  

  • 5. Crystal structure of a cross-reaction complex between an anti-HIV-1 protease antibody and an HIV-2 protease peptide.
    Rezacova P; Brynda J; Lescar J; Fabry M; Horejsi M; Sieglova I; Sedlacek J; Bentley GA
    J Struct Biol; 2005 Mar; 149(3):332-7. PubMed ID: 15721587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression, characterisation and mutagenesis of the aspartic proteinase from equine infectious anaemia virus.
    Powell DJ; Bur D; Wlodawer A; Gustchina A; Payne SL; Dunn BM; Kay J
    Eur J Biochem; 1996 Oct; 241(2):664-74. PubMed ID: 8917470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of autoproteolysis of the HIV-1 and HIV-2 proteases with engineered amino acid substitutions.
    Rosé JR; Salto R; Craik CS
    J Biol Chem; 1993 Jun; 268(16):11939-45. PubMed ID: 8505318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of simian immunodeficiency virus (SIVmac) proteinase in E. coli.
    Sugrue RJ; Wilderspin AF
    Biochem Soc Trans; 1992 May; 20(2):161S. PubMed ID: 1327907
    [No Abstract]   [Full Text] [Related]  

  • 9. Four distinct antigenic regions are present in the primary structure of HIV-1 and HIV-2 proteinases.
    Björling E; Goobar-Larsson L; Utter G; Norrby E; Chiodi F
    AIDS; 1992 Feb; 6(2):157-63. PubMed ID: 1373063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activities of precursor and tethered dimer forms of HIV proteinase.
    Phylip LH; Griffiths JT; Mills JS; Graves MC; Dunn BM; Kay J
    Adv Exp Med Biol; 1995; 362():467-72. PubMed ID: 8540359
    [No Abstract]   [Full Text] [Related]  

  • 11. Structural studies of HIV-1 protease-inhibiting antibodies.
    Lescar J; Stouracova R; Riottot MM; Chitarra V; Brynda J; Fabry M; Horejsi M; Sedlacek J; Bentley GA
    Gen Physiol Biophys; 1998 Jun; 17 Suppl 1():3-6. PubMed ID: 9789740
    [No Abstract]   [Full Text] [Related]  

  • 12. Nigerian HIV type 2 subtype A and B from heterotypic HIV type 1 and HIV type 2 or monotypic HIV type 2 infections.
    Zeh C; Pieniazek D; Agwale SM; Robbins KE; Odama L; Sani-Gwarzo N; Gboun MS; Inyang US; Folks TM; Wambebe C; Kalish ML
    AIDS Res Hum Retroviruses; 2005 Jan; 21(1):17-27. PubMed ID: 15665641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of monoclonal antibodies raised against the reverse transcriptase of human immunodeficiency virus type 2 and cross-reactivity with that of type 1.
    Snowden W; Coughlan N; Tisdale M; Stammers DK
    J Acquir Immune Defic Syndr (1988); 1993 Nov; 6(11):1187-93. PubMed ID: 7693912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible oxidation of HIV-2 protease.
    Davis DA; Newcomb FM; Moskovitz J; Fales HM; Levine RL; Yarchoan R
    Methods Enzymol; 2002; 348():249-59. PubMed ID: 11885278
    [No Abstract]   [Full Text] [Related]  

  • 15. Hydrolysis of synthetic chromogenic substrates by HIV-1 and HIV-2 proteinases.
    Phylip LH; Richards AD; Kay J; Kovalinka J; Strop P; Blaha I; Velek J; Kostka V; Ritchie AJ; Broadhurst AV
    Biochem Biophys Res Commun; 1990 Aug; 171(1):439-44. PubMed ID: 2203349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potent inhibition of drug-resistant HIV protease variants by monoclonal antibodies.
    Bartonová V; Král V; Sieglová I; Brynda J; Fábry M; Horejsí M; Kozísek M; Sasková KG; Konvalinka J; Sedlácek J; Rezácová P
    Antiviral Res; 2008 Jun; 78(3):275-7. PubMed ID: 18329737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of HIV protease by monoclonal antibodies.
    Rezacova P; Brynda J; Fabry M; Horejsi M; Stouracova R; Lescar J; Chitarra V; Riottot MM; Sedlacek J; Bentley GA
    J Mol Recognit; 2002; 15(5):272-6. PubMed ID: 12447903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary crystallographic studies of an anti-HIV-1 protease antibody that inhibits enzyme activity.
    Lescar J; Stouracova R; Riottot MM; Chitarra V; Brynda J; Fabry M; Horejsi M; Sedlacek J; Bentley GA
    Protein Sci; 1996 May; 5(5):966-8. PubMed ID: 8732768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling of the HIV-2 protease.
    Gustchina A; Weber IT; Wlodawer A
    Adv Exp Med Biol; 1991; 306():549-53. PubMed ID: 1812757
    [No Abstract]   [Full Text] [Related]  

  • 20. Substitution of proline with pipecolic acid at the scissile bond converts a peptide substrate of HIV proteinase into a selective inhibitor.
    Copeland TD; Wondrak EM; Tozser J; Roberts MM; Oroszlan S
    Biochem Biophys Res Commun; 1990 May; 169(1):310-4. PubMed ID: 2190554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.