These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 18136951)

  • 1. Comparative study of the glycolysis and ATP-ase activity in tissue homogenates.
    MEYERHOF O; WILSON JR
    Arch Biochem; 1949 Sep; 23(2):246-55. PubMed ID: 18136951
    [No Abstract]   [Full Text] [Related]  

  • 2. [Coordinated regulation of the enzyme activity of glucose transport and metabolism in Brevibacterium flavum].
    Ruklish MP; Labane LIa; Viestur UE; Shvinka IuE; Shmite IA
    Mikrobiologiia; 1983; 52(5):739-43. PubMed ID: 6664311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between coronary flow and adenosine triphosphate production from glycolysis and oxidative metabolism.
    Neely JR; Liedtke AJ; Whitmer JT; Rovetto MJ
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():301-21. PubMed ID: 1215640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of adenosine triphosphoric acid on the heart, in anaerobiosis and in absence of glycolysis].
    ERZINA GA
    Dokl Akad Nauk SSSR; 1951 Apr; 77(4):753-6. PubMed ID: 14822862
    [No Abstract]   [Full Text] [Related]  

  • 5. K(ATP)-channel activation: effects on myocardial recovery from ischaemia and role in the cardioprotective response to adenosine A1-receptor stimulation.
    Ford WR; Lopaschuk GD; Schulz R; Clanachan AS
    Br J Pharmacol; 1998 Jun; 124(4):639-46. PubMed ID: 9690854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts.
    Allard MF; Schönekess BO; Henning SL; English DR; Lopaschuk GD
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H742-50. PubMed ID: 8067430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism.
    Collins-Nakai RL; Noseworthy D; Lopaschuk GD
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H1862-71. PubMed ID: 7977816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of glycolysis, glucose oxidation, lactate oxidation, and fatty acid oxidation to ATP production in isolated biventricular working hearts from 2-week-old rabbits.
    Itoi T; Lopaschuk GD
    Pediatr Res; 1993 Dec; 34(6):735-41. PubMed ID: 8108185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA; Paggi MG; Pedersen PL
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ATP-ase activity of isolated myofibrils.
    PERRY SV
    Biochem J; 1950 Sep; 47(3):xxxviii. PubMed ID: 14800918
    [No Abstract]   [Full Text] [Related]  

  • 11. Human prostasomes express glycolytic enzymes with capacity for ATP production.
    Ronquist KG; Ek B; Stavreus-Evers A; Larsson A; Ronquist G
    Am J Physiol Endocrinol Metab; 2013 Mar; 304(6):E576-82. PubMed ID: 23341497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic performance and metabolism of the hyperthyroid heart.
    Altschuld RA; Weiss A; Kruger FA; Weissler AM
    J Clin Invest; 1969 Oct; 48(10):1905-13. PubMed ID: 4241815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of alpha-toxin from Staphylococcus aureus to test for channelling of intermediates of glycolysis between glucokinase and aldolase in hepatocytes.
    Cascante M; Centelles JJ; Agius L
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):899-905. PubMed ID: 11104701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proinflammatory cytokines increase the rate of glycolysis and adenosine-5'-triphosphate turnover in cultured rat enterocytes.
    Berg S; Sappington PL; Guzik LJ; Delude RL; Fink MP
    Crit Care Med; 2003 Apr; 31(4):1203-12. PubMed ID: 12682494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of adenosine triphosphate from glycolytic intermediates for cell-free protein synthesis.
    Kim DM; Swartz JR
    Biotechnol Bioeng; 2001 Aug; 74(4):309-16. PubMed ID: 11410855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [GLYCOLYSIS OF INCUBATED ERYTHROCYTES IN VITRO AND THE EFFECT ON THIS OF THE SUBSTRATES GLUCOSE AND ADENOSINE].
    QUARTODIPALO FM; SPINNLER HR; MOMBELLI L; BERTOLINI AM
    Acta Gerontol (Milano); 1963; 13():181-7. PubMed ID: 14106831
    [No Abstract]   [Full Text] [Related]  

  • 17. Measurements of intracellular ATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae.
    Ytting CK; Fuglsang AT; Hiltunen JK; Kastaniotis AJ; Özalp VC; Nielsen LJ; Olsen LF
    Integr Biol (Camb); 2012 Jan; 4(1):99-107. PubMed ID: 22134619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of normal differentiation of myeloid leukemic cells. X. Glucose utilization, cellular ATP and associated membrane changes in D+ and D- cells.
    Vlodavsky I; Fibach E; Sachs L
    J Cell Physiol; 1975 Dec; 87(2):167-77. PubMed ID: 1061711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GAPDH: the missing link between glycolysis and mitochondrial oxidative phosphorylation?
    Ramzan R; Weber P; Linne U; Vogt S
    Biochem Soc Trans; 2013 Oct; 41(5):1294-7. PubMed ID: 24059522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty acid synthesis by isolated leucoplasts from developing Brassica seeds: role of glycolytic intermediates as the source of carbon and energy.
    Gupta R; Singh R
    Indian J Biochem Biophys; 1996 Dec; 33(6):478-83. PubMed ID: 9219433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.