These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 1813745)

  • 1. Numerical algorithm for dielectric-permittivity microwave imaging of inhomogeneous biological bodies.
    Caorsi S; Frattoni A; Gragnani GL; Nortino E; Pastorino M
    Med Biol Eng Comput; 1991 Nov; 29(6):NS37-44. PubMed ID: 1813745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of dielectric permittivity distributions in arbitrary 2-D inhomogeneous biological bodies by a multiview microwave numerical method.
    Caorsi S; Gragnani GL; Pastorino M
    IEEE Trans Med Imaging; 1993; 12(2):232-9. PubMed ID: 18218410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional quantitative microwave imaging of realistic numerical breast phantoms using Huber regularization.
    Bai F; Franchois A; De Zaeytijd J; Pižurica A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5135-8. PubMed ID: 24110891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical approach based on electromagnetic scattering for analysing dielectric shimming in high-field MRI.
    Brink WM; Remis RF; Webb AG
    Magn Reson Med; 2016 May; 75(5):2185-94. PubMed ID: 26125996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental investigation of an optimization approach to microwave tomography.
    Hashemzadeh P; Fhager A; Persson M
    Electromagn Biol Med; 2006; 25(1):1-12. PubMed ID: 16595329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realistic microwave breast models through T1-weighted 3-D MRI data.
    Tunçay AH; Akduman I
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):688-98. PubMed ID: 25347868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of electromagnetic field distributions inside biological bodies by using an inverse scattering procedure based on a statistical cooling algorithm.
    Caorsi S; Massa A
    Bioelectromagnetics; 2000 Sep; 21(6):422-31. PubMed ID: 10972946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating prior information into microwave tomography Part 1: Impact of detail on image quality.
    Kurrant D; Baran A; LoVetri J; Fear E
    Med Phys; 2017 Dec; 44(12):6461-6481. PubMed ID: 28921580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electromagnetic imaging approach using a multi-illumination technique.
    Caorsi S; Gragnani GL; Pastorino M
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):406-9. PubMed ID: 8063310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative microwave imaging with a 2.45-GHz planar microwave camera.
    Franchois A; Joisel A; Pichot C; Bolomey JC
    IEEE Trans Med Imaging; 1998 Aug; 17(4):550-61. PubMed ID: 9845311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the breast surface using UWB microwave monostatic backscatter measurements.
    Winters DW; Shea JD; Madsen EL; Frank GR; Van Veen BD; Hagness SC
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):247-56. PubMed ID: 18232368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A semi-automatic method for developing an anthropomorphic numerical model of dielectric anatomy by MRI.
    Mazzurana M; Sandrini L; Vaccari A; Malacarne C; Cristoforetti L; Pontalti R
    Phys Med Biol; 2003 Oct; 48(19):3157-70. PubMed ID: 14579858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid microwave tomography technique for breast cancer imaging.
    Sabouni A; Flores-Tapia D; Noghanian S; Thomas G; Pistorius S
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4273-6. PubMed ID: 17946617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based microwave image reconstruction: simulations and experiments.
    Ciocan R; Jiang H
    Med Phys; 2004 Dec; 31(12):3231-41. PubMed ID: 15651607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Validation of Microwave Tomographywith the DBIM-TwIST Algorithm for Brain StrokeDetection and Classification.
    Karadima O; Rahman M; Sotiriou I; Ghavami N; Lu P; Ahsan S; Kosmas P
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Experimental Evaluation of a Non-Invasive Microwave Head Imaging System for Intracranial Haemorrhage Detection.
    Mobashsher AT; Bialkowski KS; Abbosh AM; Crozier S
    PLoS One; 2016; 11(4):e0152351. PubMed ID: 27073994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3-D Level Set Method for Microwave Breast Imaging.
    Colgan TJ; Hagness SC; Van Veen BD
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2526-34. PubMed ID: 26011863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A TSVD analysis of microwave inverse scattering for breast imaging.
    Shea JD; Van Veen BD; Hagness SC
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):936-45. PubMed ID: 22113770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image distortion in thermoacoustic tomography caused by microwave diffraction.
    Li C; Pramanik M; Ku G; Wang LV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031923. PubMed ID: 18517438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Fast 3-D Electromagnetic Solver for Microwave Tomography Imaging.
    Simonov N; Kim BR; Lee KJ; Jeon SI; Son SH
    IEEE Trans Med Imaging; 2017 Oct; 36(10):2160-2170. PubMed ID: 28600242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.