These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 18139005)

  • 1. The influence of hydrostatic pressure and urethane on the thermal inactivation of bacteriophage.
    FOSTER RA; JOHNSON FH; MILLER VK
    J Gen Physiol; 1949 Sep; 33(1):1-16. PubMed ID: 18139005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of urethane and of hydrostatic pressure on the growth of bacteriophages T2, T5, T6, and T7.
    FOSTER RA; JOHNSON FH
    J Gen Physiol; 1951 May; 34(5):529-50. PubMed ID: 14832436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. THE NATURE AND CONTROL OF REACTIONS IN BIOLUMINESCENCE : WITH SPECIAL REFERENCE TO THE MECHANISM OF REVERSIBLE AND IRREVERSIBLE INHIBITIONS BY HYDROGEN AND HYDROXYL IONS, TEMPERATURE, PRESSURE, ALCOHOL, URETHANE, AND SULFANILAMIDE IN BACTERIA.
    Johnson FH; Eyring H; Steblay R; Chaplin H; Huber C; Gherardi G
    J Gen Physiol; 1945 May; 28(5):463-537. PubMed ID: 19873433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of cell wall penetration by viruses. II. Demonstration of cyclic permeability change accompanying virus infection of Escherichia coli B cells.
    PUCK TT; LEE HH
    J Exp Med; 1955 Feb; 101(2):151-75. PubMed ID: 13233443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation and reactivation of B. megatherium phage.
    NORTHROP JH
    J Gen Physiol; 1955 Nov; 39(2):225-58. PubMed ID: 13271723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stability of bacterial viruses in solutions of salts.
    ADAMS MH
    J Gen Physiol; 1949 May; 32(5):579-94. PubMed ID: 18131256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. THERMAL DESTRUCTION KINETICS OF A LACTIC STREPTOCOCCAL BACTERIOPHAGE.
    DAOUST DR; EL-BISI HM; LITSKY W
    Appl Microbiol; 1965 May; 13(3):478-85. PubMed ID: 14325292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of bacteriophages by decay of incorporated radioactive phosphorus.
    STENT GS; FUERST CR
    J Gen Physiol; 1955 Mar; 38(4):441-58. PubMed ID: 14354146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the thermal inactivation of the Lactococcus lactis bacteriophage P008.
    Müller-Merbach M; Neve H; Hinrichs J
    J Dairy Res; 2005 Aug; 72(3):281-6. PubMed ID: 16174358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stability of almond β-glucosidase during combined high pressure-thermal processing: a kinetic study.
    Terefe NS; Sheean P; Fernando S; Versteeg C
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):2917-28. PubMed ID: 22644526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leuconostoc bacteriophages from blue cheese manufacture: long-term survival, resistance to thermal treatments, high pressure homogenization and chemical biocides of industrial application.
    Pujato SA; Guglielmotti DM; Ackermann HW; Patrignani F; Lanciotti R; Reinheimer JA; Quiberoni A
    Int J Food Microbiol; 2014 May; 177():81-8. PubMed ID: 24607426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The protective effect of food matrices on Listeria lytic bacteriophage P100 application towards high pressure processing.
    Komora N; Bruschi C; Ferreira V; Maciel C; Brandão TRS; Fernandes R; Saraiva JA; Castro SM; Teixeira P
    Food Microbiol; 2018 Dec; 76():416-425. PubMed ID: 30166169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of galactose oxidase by high hydrostatic pressure: Insights on the role of cavities size.
    Kang MJ; Reyes-De-Corcuera JI
    Biotechnol Bioeng; 2024 Jul; 121(7):2057-2066. PubMed ID: 38650386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal and chemical inactivation of indigenous Streptococcus thermophilus bacteriophages isolated from Argentinian dairy plants.
    Binetti AG; Reinheimer JA
    J Food Prot; 2000 Apr; 63(4):509-15. PubMed ID: 10772217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of high pressure homogenisation of raw bovine milk on alkaline phosphatase and microbial inactivation. A comparison with continuous short-time thermal treatments.
    Picart L; Thiebaud M; René M; Pierre Guiraud J; Cheftel JC; Dumay E
    J Dairy Res; 2006 Nov; 73(4):454-63. PubMed ID: 16834813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decay of incorporated radioactive phosphorus during reproduction of bacteriophage T2.
    STENT GS
    J Gen Physiol; 1955 Jul; 38(6):853-65. PubMed ID: 13242767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of high hydrostatic pressure or hydrophobic modification on thermal stability of xanthine oxidase.
    Halalipour A; Duff MR; Howell EE; Reyes-De-Corcuera JI
    Enzyme Microb Technol; 2017 Aug; 103():18-24. PubMed ID: 28554381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal inactivation kinetics of Lactococcus lactis subsp. lactis bacteriophage pll98-22.
    Sanlibaba P; Buzrul S; Akkoç N; Alpas H; Akçelik M
    Acta Biol Hung; 2009 Mar; 60(1):127-36. PubMed ID: 19378929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of Lactobacillus Virulent Bacteriophage by Thermal and Chemical Treatments.
    Chen X; Liu Y; Chai S; Guo J; Wu W
    J Food Prot; 2018 Oct; 81(10):1673-1678. PubMed ID: 30222002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.