These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 1813979)
1. Comparative aspects of nasal airway anatomy: relevance to inhalation toxicology. Harkema JR Toxicol Pathol; 1991; 19(4 Pt 1):321-36. PubMed ID: 1813979 [TBL] [Abstract][Full Text] [Related]
2. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Harkema JR; Carey SA; Wagner JG Toxicol Pathol; 2006; 34(3):252-69. PubMed ID: 16698724 [TBL] [Abstract][Full Text] [Related]
3. Comparative pathology of the nasal mucosa in laboratory animals exposed to inhaled irritants. Harkema JR Environ Health Perspect; 1990 Apr; 85():231-8. PubMed ID: 2116960 [TBL] [Abstract][Full Text] [Related]
4. The relevance to humans of animal models for inhalation studies of cancer in the nose and upper airways. DeSesso JM Qual Assur; 1993 Sep; 2(3):213-31. PubMed ID: 8137082 [TBL] [Abstract][Full Text] [Related]
5. A Review of the Comparative Anatomy, Histology, Physiology and Pathology of the Nasal Cavity of Rats, Mice, Dogs and Non-human Primates. Relevance to Inhalation Toxicology and Human Health Risk Assessment. Chamanza R; Wright JA J Comp Pathol; 2015 Nov; 153(4):287-314. PubMed ID: 26460093 [TBL] [Abstract][Full Text] [Related]
6. Consequences of prolonged inhalation of ozone on F344/N rats: collaborative studies. Part VII: Effects on the nasal mucociliary apparatus. Harkema JR; Morgan KT; Gross EA; Catalano PJ; Griffith WC Res Rep Health Eff Inst; 1994 Nov; (65 Pt 7):3-26; discussion 27-34. PubMed ID: 7888110 [TBL] [Abstract][Full Text] [Related]
7. Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways. Frederick CB; Bush ML; Lomax LG; Black KA; Finch L; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB; Ultman JS Toxicol Appl Pharmacol; 1998 Sep; 152(1):211-31. PubMed ID: 9772217 [TBL] [Abstract][Full Text] [Related]
8. Effects of concentrated ambient particles on normal and hypersecretory airways in rats. Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855 [TBL] [Abstract][Full Text] [Related]
9. Studies of inspiratory airflow patterns in the nasal passages of the F344 rat and rhesus monkey using nasal molds: relevance to formaldehyde toxicity. Morgan KT; Kimbell JS; Monticello TM; Patra AL; Fleishman A Toxicol Appl Pharmacol; 1991 Sep; 110(2):223-40. PubMed ID: 1891770 [TBL] [Abstract][Full Text] [Related]
10. In vitro culture of microdissected rat nasal airway tissues. Fanucchi MV; Harkema JR; Plopper CG; Hotchkiss JA Am J Respir Cell Mol Biol; 1999 Jun; 20(6):1274-85. PubMed ID: 10340947 [TBL] [Abstract][Full Text] [Related]
11. Dosimetry of nasal uptake of water-soluble and reactive gases: a first study of interhuman variability. Garcia GJ; Schroeter JD; Segal RA; Stanek J; Foureman GL; Kimbell JS Inhal Toxicol; 2009 Jun; 21(7):607-18. PubMed ID: 19459775 [TBL] [Abstract][Full Text] [Related]
12. Oncogenic potential of inhaled hydrazine in the nose of rats and hamsters after 1 or 10 1-hr exposures. Latendresse JR; Marit GB; Vernot EH; Haun CC; Flemming CD Fundam Appl Toxicol; 1995 Aug; 27(1):33-48. PubMed ID: 7589927 [TBL] [Abstract][Full Text] [Related]
13. NTP Toxicology and Carcinogenesis Studies of Isobutyraldehyde (CAS No. 78-84-2) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). National Toxicology Program Natl Toxicol Program Tech Rep Ser; 1999 Feb; 472():1-242. PubMed ID: 12579201 [TBL] [Abstract][Full Text] [Related]
14. Approaches to the identification and recording of nasal lesions in toxicology studies. Morgan KT Toxicol Pathol; 1991; 19(4 Pt 1):337-51. PubMed ID: 1813980 [TBL] [Abstract][Full Text] [Related]
15. Correlations to Estimate the Key Anatomical Dimensions of Pediatric Nasal Airways using Minimally Invasive Measurements of Intranasal Pressure Gradient. Hosseini S; Schuman TA; Golshahi L J Aerosol Med Pulm Drug Deliv; 2021 Jun; 34(3):171-180. PubMed ID: 32833574 [No Abstract] [Full Text] [Related]
16. Nonneoplastic nasal lesions in rats and mice. Monticello TM; Morgan KT; Uraih L Environ Health Perspect; 1990 Apr; 85():249-74. PubMed ID: 2200665 [TBL] [Abstract][Full Text] [Related]
17. Changes in the nasal epithelium of rats exposed by inhalation to mixtures of formaldehyde, acetaldehyde, and acrolein. Cassee FR; Groten JP; Feron VJ Fundam Appl Toxicol; 1996 Feb; 29(2):208-18. PubMed ID: 8742318 [TBL] [Abstract][Full Text] [Related]
18. Two-year inhalation exposure of female and male B6C3F1 mice and F344 rats to chlorine gas induces lesions confined to the nose. Wolf DC; Morgan KT; Gross EA; Barrow C; Moss OR; James RA; Popp JA Fundam Appl Toxicol; 1995 Jan; 24(1):111-31. PubMed ID: 7713334 [TBL] [Abstract][Full Text] [Related]
19. Ozone- and endotoxin-induced mucous cell metaplasias in rat airway epithelium: novel animal models to study toxicant-induced epithelial transformation in airways. Harkema JR; Hotchkiss JA Toxicol Lett; 1993 May; 68(1-2):251-63. PubMed ID: 8516771 [TBL] [Abstract][Full Text] [Related]
20. Anatomy and physiology of the upper airway. Sahin-Yilmaz A; Naclerio RM Proc Am Thorac Soc; 2011 Mar; 8(1):31-9. PubMed ID: 21364219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]