These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 1814005)

  • 1. Snake venom variability: methods of study, results and interpretation.
    Chippaux JP; Williams V; White J
    Toxicon; 1991; 29(11):1279-303. PubMed ID: 1814005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations.
    Alape-Girón A; Sanz L; Escolano J; Flores-Díaz M; Madrigal M; Sasa M; Calvete JJ
    J Proteome Res; 2008 Aug; 7(8):3556-71. PubMed ID: 18557640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Snake venomics and antivenomics: Proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming.
    Gutiérrez JM; Lomonte B; León G; Alape-Girón A; Flores-Díaz M; Sanz L; Angulo Y; Calvete JJ
    J Proteomics; 2009 Mar; 72(2):165-82. PubMed ID: 19344652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current treatment for venom-induced consumption coagulopathy resulting from snakebite.
    Maduwage K; Isbister GK
    PLoS Negl Trop Dis; 2014 Oct; 8(10):e3220. PubMed ID: 25340841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of Micrurus snake species related to their venom toxic effects and the prospective of antivenom neutralization.
    Tanaka GD; Furtado Mde F; Portaro FC; Sant'Anna OA; Tambourgi DV
    PLoS Negl Trop Dis; 2010 Mar; 4(3):e622. PubMed ID: 20231886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highlights of animal venom research on the geographical variations of toxin components, toxicities and envenomation therapy.
    Yu C; Yu H; Li P
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2994-3006. PubMed ID: 33122066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of venom-antivenom (VAV) immunocomplexes in vitro as a measure of antivenom efficacy.
    O'Leary MA; Isbister GK
    Toxicon; 2014 Jan; 77():125-32. PubMed ID: 24252422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional and proteomic comparison of Bothrops jararaca venom from captive specimens and the Brazilian Bothropic Reference Venom.
    Farias IB; Morais-Zani K; Serino-Silva C; Sant'Anna SS; Rocha MMTD; Grego KF; Andrade-Silva D; Serrano SMT; Tanaka-Azevedo AM
    J Proteomics; 2018 Mar; 174():36-46. PubMed ID: 29275044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antivenom for snakebite envenoming in Sri Lanka: the need for geographically specific antivenom and improved efficacy.
    Keyler DE; Gawarammana I; Gutiérrez JM; Sellahewa KH; McWhorter K; Malleappah R
    Toxicon; 2013 Jul; 69():90-7. PubMed ID: 23454626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in venom composition and reactivity in two specimens of yellow-faced whip snake (Demansia psammophis) from the same geographical area.
    Williams V; White J
    Toxicon; 1990; 28(11):1351-4. PubMed ID: 2128423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Present tests for detection of snake venom: clinical applications.
    Minton SA
    Ann Emerg Med; 1987 Sep; 16(9):932-7. PubMed ID: 3307554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of immunoturbidimetry to detect venom-antivenom binding using snake venoms.
    O'Leary MA; Maduwage K; Isbister GK
    J Pharmacol Toxicol Methods; 2013; 67(3):177-81. PubMed ID: 23416032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Equine IgG Antivenoms against Major Snake Groups in Mozambique.
    Guidolin FR; Caricati CP; Marcelino JR; da Silva WD
    PLoS Negl Trop Dis; 2016 Jan; 10(1):e0004325. PubMed ID: 26730709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes.
    Brahma RK; McCleary RJ; Kini RM; Doley R
    Toxicon; 2015 Jan; 93():1-10. PubMed ID: 25448392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absolute venomics: Absolute quantification of intact venom proteins through elemental mass spectrometry.
    Calderón-Celis F; Cid-Barrio L; Encinar JR; Sanz-Medel A; Calvete JJ
    J Proteomics; 2017 Jul; 164():33-42. PubMed ID: 28579478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conserved structure of snake venom toxins confers extensive immunological cross-reactivity to toxin-specific antibody.
    Harrison RA; Wüster W; Theakston RD
    Toxicon; 2003 Mar; 41(4):441-9. PubMed ID: 12657313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Venom yields from Australian and some other species of snakes.
    Mirtschin PJ; Dunstan N; Hough B; Hamilton E; Klein S; Lucas J; Millar D; Madaras F; Nias T
    Ecotoxicology; 2006 Aug; 15(6):531-8. PubMed ID: 16937075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diet and snake venom evolution: can local selection alone explain intraspecific venom variation?
    Sasa M
    Toxicon; 1999 Feb; 37(2):249-52; author reply 253-60. PubMed ID: 10078860
    [No Abstract]   [Full Text] [Related]  

  • 19. Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies.
    Rogalski A; Soerensen C; Op den Brouw B; Lister C; Dashevsky D; Arbuckle K; Gloria A; Zdenek CN; Casewell NR; Gutiérrez JM; Wüster W; Ali SA; Masci P; Rowley P; Frank N; Fry BG
    Toxicol Lett; 2017 Oct; 280():159-170. PubMed ID: 28847519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Snake venom proteome and immuno-profiling of the hundred-pace viper, Deinagkistrodon acutus, in Taiwan.
    Chen PC; Huang MN; Chang JF; Liu CC; Chen CK; Hsieh CH
    Acta Trop; 2019 Jan; 189():137-144. PubMed ID: 30268686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.