These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 1814276)

  • 1. Increase of phenol tolerance of Escherichia coli by alterations of the fatty acid composition of the membrane lipids.
    Keweloh H; Diefenbach R; Rehm HJ
    Arch Microbiol; 1991; 157(1):49-53. PubMed ID: 1814276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids.
    Unell M; Kabelitz N; Jansson JK; Heipieper HJ
    FEMS Microbiol Lett; 2007 Jan; 266(2):138-43. PubMed ID: 17233723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of fatty acids by concanavalin A-stimulated lymphocytes and the effect on fatty acid composition and membrane fluidity.
    Calder PC; Yaqoob P; Harvey DJ; Watts A; Newsholme EA
    Biochem J; 1994 Jun; 300 ( Pt 2)(Pt 2):509-18. PubMed ID: 8002957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenol-induced membrane changes in free and immobilized Escherichia coli.
    Keweloh H; Weyrauch G; Rehm HJ
    Appl Microbiol Biotechnol; 1990 Apr; 33(1):66-71. PubMed ID: 1366564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alcohol tolerance in Escherichia coli.
    Ingram LO; Vreeland NS; Eaton LC
    Pharmacol Biochem Behav; 1980; 13 Suppl 1():191-5. PubMed ID: 7017759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Relationship among growth temperature, membrane fatty acid composition and pressure resistance of Escherichia coli].
    Li ZJ
    Wei Sheng Wu Xue Bao; 2005 Jun; 45(3):426-30. PubMed ID: 15989240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of palmitic and docosahexaenoic acids in Reuber H35 hepatoma cells.
    Martínez-Cayuela M; García-Pelayo MC; Linares A; García-Peregrín E
    J Biochem; 2000 Oct; 128(4):545-51. PubMed ID: 11011136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acids and phospholipids of membranes isolated from Escherichia coli growing in a medium with parathion.
    Rosas SB; Carranza de Storani MM; Ghittoni NE
    Bull Environ Contam Toxicol; 1985 Feb; 34(2):265-70. PubMed ID: 3884065
    [No Abstract]   [Full Text] [Related]  

  • 9. Membrane lipids of Mycoplasma orale: lipid composition and synthesis of phospholipids.
    Hirai Y; Kukida S; Matsushita O; Nagamachi E; Tomochika K; Kanemasa Y
    Physiol Chem Phys Med NMR; 1992; 24(1):21-7. PubMed ID: 1594658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity.
    Heipieper HJ; Diefenbach R; Keweloh H
    Appl Environ Microbiol; 1992 Jun; 58(6):1847-52. PubMed ID: 1622260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of fatty acid composition of membrane phospholipid in hepatocyte monolayer with n-3, n-6 and n-9 fatty acids and its relationship to triacylglycerol production.
    Strum-Odin R; Adkins-Finke B; Blake WL; Phinney SD; Clarke SD
    Biochim Biophys Acta; 1987 Sep; 921(2):378-91. PubMed ID: 3651495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid composition and dynamics of cell membranes of Bacillus stearothermophilus adapted to amiodarone.
    Rosa SM; Antunes-Madeira MC; Matos MJ; Jurado AS; Madeira VM
    Biochim Biophys Acta; 2000 Sep; 1487(2-3):286-95. PubMed ID: 11018480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of specific exogenous fatty acids into membrane lipids modulates protonophore resistance in Bacillus subtilis.
    Krulwich TA; Clejan S; Falk LH; Guffanti AA
    J Bacteriol; 1987 Oct; 169(10):4479-85. PubMed ID: 2820928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsaturated fatty acid requirement in Escherichia coli: mechanism of palmitate-induced inhibition of growth of strain WN1.
    Ingram LO; Eaton LC; Erdos GW; Tedder TF; Vreeland NL
    J Membr Biol; 1982; 65(1-2):31-40. PubMed ID: 7035675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycoplasma membrane lipids: variations in fatty acid composition.
    McElhaney RN; Tourtellotte ME
    Science; 1969 Apr; 164(3878):433-4. PubMed ID: 5777213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally induced heterogeneity in microsomal membranes of fatty acid-supplemented Tetrahymena: lipid composition, fluidity and enzyme activity.
    Kameyama Y; Ohki K; Nozawa Y
    J Biochem; 1980 Nov; 88(5):1291-303. PubMed ID: 6780538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lessons in Membrane Engineering for Octanoic Acid Production from Environmental Escherichia coli Isolates.
    Chen Y; Reinhardt M; Neris N; Kerns L; Mansell TJ; Jarboe LR
    Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30030228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin.
    Wang LH; Zeng XA; Wang MS; Brennan CS; Gong D
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):481-490. PubMed ID: 29138066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli.
    Heipieper HJ; Keweloh H; Rehm HJ
    Appl Environ Microbiol; 1991 Apr; 57(4):1213-7. PubMed ID: 2059043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of membrane fluidity and fatty acid composition on the prothrombin-converting activity of phospholipid vesicles.
    Govers-Riemslag JW; Janssen MP; Zwaal RF; Rosing J
    Biochemistry; 1992 Oct; 31(41):10000-8. PubMed ID: 1390758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.