BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1814548)

  • 1. Serum and plasma from patients with Lambert-Eaton Myasthenic Syndrome reduce depolarization-dependent uptake of 45Ca2+ into rat cortical synaptosomes.
    Hewett SJ; Atchison WD
    Brain Res; 1991 Dec; 566(1-2):320-4. PubMed ID: 1814548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificity of Lambert-Eaton myasthenic syndrome immunoglobulin for nerve terminal calcium channels.
    Hewett SJ; Atchison WD
    Brain Res; 1992 Dec; 599(2):324-32. PubMed ID: 1363289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of synaptosomal calcium channel function by Lambert-Eaton myasthenic immunoglobulin is serum-dependent.
    Hewett SJ; Atchison WD
    Brain Res; 1992 Dec; 599(2):317-23. PubMed ID: 1363288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive transfer of Lambert-Eaton myasthenic syndrome induces dihydropyridine sensitivity of ICa in mouse motor nerve terminals.
    Xu YF; Hewett SJ; Atchison WD
    J Neurophysiol; 1998 Sep; 80(3):1056-69. PubMed ID: 9744921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of Lambert-Eaton myasthenic syndrome IgG to synaptosomal proteins does not correlate with an inhibition of calcium uptake.
    Martin-Moutot N; Lang B; Newsom-Davis J; Seagar M
    Neurosci Lett; 1995 Mar; 187(2):115-8. PubMed ID: 7783957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+ channels as targets of neurological disease: Lambert-Eaton Syndrome and other Ca2+ channelopathies.
    Flink MT; Atchison WD
    J Bioenerg Biomembr; 2003 Dec; 35(6):697-718. PubMed ID: 15000529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive transfer of Lambert-Eaton syndrome to mice induces dihydropyridine sensitivity of neuromuscular transmission.
    Flink MT; Atchison WD
    J Physiol; 2002 Sep; 543(Pt 2):567-76. PubMed ID: 12205190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proteins synaptotagmin and syntaxin are not general targets of Lambert-Eaton myasthenic syndrome autoantibody.
    Hajela RK; Atchison WD
    J Neurochem; 1995 Mar; 64(3):1245-51. PubMed ID: 7861157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lambert-Eaton myasthenic syndrome - diagnosis, pathogenesis and therapy.
    Hülsbrink R; Hashemolhosseini S
    Clin Neurophysiol; 2014 Dec; 125(12):2328-36. PubMed ID: 25065299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lambert-Eaton myasthenic syndrome: search for alternative autoimmune targets and possible compensatory mechanisms based on presynaptic calcium homeostasis.
    Takamori M
    J Neuroimmunol; 2008 Sep; 201-202():145-52. PubMed ID: 18653248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lambert-Eaton myasthenic syndrome (LEMS): a rare autoimmune presynaptic disorder often associated with cancer.
    Schoser B; Eymard B; Datt J; Mantegazza R
    J Neurol; 2017 Sep; 264(9):1854-1863. PubMed ID: 28608304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rats immunized with cholinergic synaptosomes: a model for Lambert-Eaton syndrome.
    Chapman J; Rabinowitz R; Korczyn AD; Michaelson DM
    Muscle Nerve; 1990 Aug; 13(8):726-33. PubMed ID: 2385259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecular immunology of voltage-gated calcium channel and Lambert-Eaton myasthenic syndrome].
    Iwasa K; Komai K; Yasukawa Y; Maruta T; Takamori M
    Nihon Rinsho; 1997 Dec; 55(12):3322-30. PubMed ID: 9436458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of active zone structure and function at mammalian NMJs predict that loss of calcium channels alone is not sufficient to replicate LEMS effects.
    Ginebaugh SP; Badawi Y; Laghaei R; Mersky G; Wallace CJ; Tarr TB; Kaufhold C; Reddel S; Meriney SD
    J Neurophysiol; 2023 May; 129(5):1259-1277. PubMed ID: 37073966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lambert-eaton myasthenic syndrome differential reactivity of tumor versus non-tumor patients to subunits of the voltage-gated calcium channel.
    Pellkofer HL; Armbruster L; Krumbholz M; Titulaer MJ; Verschuuren JJ; Schumm F; Voltz R
    J Neuroimmunol; 2008 Nov; 204(1-2):136-9. PubMed ID: 18809213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity of calcium channel autoantibodies detected using a small-cell lung cancer line derived from a Lambert-Eaton myasthenic syndrome patient.
    Johnston I; Lang B; Leys K; Newsom-Davis J
    Neurology; 1994 Feb; 44(2):334-8. PubMed ID: 8309586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased calcium currents in motor nerve terminals of mice with Lambert-Eaton myasthenic syndrome.
    Smith DO; Conklin MW; Jensen PJ; Atchison WD
    J Physiol; 1995 Aug; 487(1):115-23. PubMed ID: 7473242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The action of Lambert-Eaton myasthenic syndrome immunoglobulin G on cloned human voltage-gated calcium channels.
    Pinto A; Iwasa K; Newland C; Newsom-Davis J; Lang B
    Muscle Nerve; 2002 May; 25(5):715-724. PubMed ID: 11994966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lambert-Eaton syndrome antibodies inhibit acetylcholine release and P/Q-type Ca2+ channels in electric ray nerve endings.
    Satoh Y; Hirashima N; Tokumaru H; Takahashi MP; Kang J; Viglione MP; Kim YI; Kirino Y
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):427-38. PubMed ID: 9508807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lambert-Eaton myasthenic syndrome: mouse passive-transfer model illuminates disease pathology and facilitates testing therapeutic leads.
    Meriney SD; Tarr TB; Ojala KS; Wu M; Li Y; Lacomis D; Garcia-Ocaña A; Liang M; Valdomir G; Wipf P
    Ann N Y Acad Sci; 2018 Jan; 1412(1):73-81. PubMed ID: 29125190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.