BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1814680)

  • 1. Accumulation of sulfoglycolipids in hyperosmosis-resistant clones derived from the renal epithelial cell line MDCK (Madin-Darby canine kidney cell).
    Niimura Y; Ishizuka I
    Comp Biochem Physiol B; 1991; 100(3):535-41. PubMed ID: 1814680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive changes in sulfoglycolipids of kidney cell lines by culture in anisosmotic media.
    Niimura Y; Ishizuka I
    Biochim Biophys Acta; 1990 May; 1052(2):248-54. PubMed ID: 2334735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic responses of sulfatide and related glycolipids in Madin-Darby canine kidney (MDCK) cells under osmotic stresses.
    Niimura Y; Nagai K
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Jan; 149(1):161-7. PubMed ID: 17905621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperosmolality regulates endothelin release by Madin-Darby canine kidney cells.
    Schramek H; Gstraunthaler G; Willinger CC; Pfaller W
    J Am Soc Nephrol; 1993 Aug; 4(2):206-13. PubMed ID: 8400084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD9 antigen mRNA is induced by hypertonicity in two renal epithelial cell lines.
    Sheikh-Hamad D; Ferraris JD; Dragolovich J; Preuss HG; Burg MB; García-Pérez A
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C253-8. PubMed ID: 8772451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypically and karyotypically distinct Madin-Darby canine kidney cell clones respond differently to alkaline stress.
    Wünsch S; Gekle M; Kersting U; Schuricht B; Oberleithner H
    J Cell Physiol; 1995 Jul; 164(1):164-71. PubMed ID: 7790388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apical-to-basolateral transepithelial transport of Ochratoxin A by two subtypes of Madin-Darby canine kidney cells.
    Schwerdt G; Gekle M; Freudinger R; Mildenberger S; Silbernagl S
    Biochim Biophys Acta; 1997 Mar; 1324(2):191-9. PubMed ID: 9092706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of subclones of Madin-Darby canine kidney renal epithelial cell line.
    Nakazato Y; Suzuki H; Saruta T
    Biochim Biophys Acta; 1989 Oct; 1014(1):57-65. PubMed ID: 2553108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of Madin-Darby canine kidney cells to hypertonic medium: an electron microprobe analysis.
    Borgmann S; Dörge A
    Kidney Int Suppl; 1998 Sep; 67():S133-5. PubMed ID: 9736268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulphation of L-tyrosine in mammalian cells: a comparative study.
    Sakakibara Y; Suiko M; Nakajima H; Liu MC
    Biochem J; 1995 Feb; 305 ( Pt 3)(Pt 3):993-8. PubMed ID: 7848302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Madin Darby canine kidney (MDCK) epithelial cell monolayer as a model cellular transport barrier.
    Cho MJ; Thompson DP; Cramer CT; Vidmar TJ; Scieszka JF
    Pharm Res; 1989 Jan; 6(1):71-7. PubMed ID: 2470075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. alpha 1- and beta 2-adrenergic receptor expression in the Madin-Darby canine kidney epithelial cell line.
    Meier KE; Snavely MD; Brown SL; Brown JH; Insel PA
    J Cell Biol; 1983 Aug; 97(2):405-15. PubMed ID: 6309860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taurine behaves as an osmolyte in Madin-Darby canine kidney cells. Protection by polarized, regulated transport of taurine.
    Uchida S; Nakanishi T; Kwon HM; Preston AS; Handler JS
    J Clin Invest; 1991 Aug; 88(2):656-62. PubMed ID: 1864974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medium osmolarity-dependent biosynthesis of renal cellular sulfoglycolipids is mediated by the MAPK signaling pathway.
    Niimura Y; Moue T; Takahashi N; Nagai K
    Biochim Biophys Acta; 2010 Oct; 1801(10):1155-62. PubMed ID: 20619354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypertonic activation of the renal betaine/GABA transporter is microtubule dependent.
    Basham JC; Chabrerie A; Kempson SA
    Kidney Int; 2001 Jun; 59(6):2182-91. PubMed ID: 11380820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteoglycans in polarized epithelial Madin-Darby canine kidney cells.
    Svennevig K; Prydz K; Kolset SO
    Biochem J; 1995 Nov; 311 ( Pt 3)(Pt 3):881-8. PubMed ID: 7487945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential activities of H+ extrusion systems in MDCK cells due to extracellular osmolality and pH.
    Feifel E; Krall M; Geibel JP; Pfaller W
    Am J Physiol; 1997 Oct; 273(4):F499-506. PubMed ID: 9362327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarity of neutral glycolipids, gangliosides, and sulfated lipids in MDCK epithelial cells.
    Nichols GE; Shiraishi T; Young WW
    J Lipid Res; 1988 Sep; 29(9):1205-13. PubMed ID: 3183526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripheral-type benzodiazepine binding sites in a renal epithelial cell line (MDCK).
    Beaumont K; Moberly JB; Fanestil DD
    Eur J Pharmacol; 1984 Aug; 103(1-2):185-8. PubMed ID: 6090173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amiloride-resistant Madin-Darby canine kidney (MDCK) cells exhibit decreased cation transport.
    Taub M; Saier MH
    J Cell Physiol; 1981 Feb; 106(2):191-9. PubMed ID: 6260818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.