These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1815355)

  • 1. QSARs and PARs for biodegradation of PCBs.
    Parsons JR; Commandeur LC; van Eyseren HE; Govers HA
    Sci Total Environ; 1991 Dec; 109-110():275-81. PubMed ID: 1815355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial degradation of polychlorinated biphenyls (PCB) and their metabolites.
    Furukawa K; Tomizuka N; Kamibayashi A
    Adv Exp Med Biol; 1981; 136 Pt A():407-18. PubMed ID: 6807061
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls.
    Furukawa K; Tomizuka N; Kamibayashi A
    Appl Environ Microbiol; 1979 Aug; 38(2):301-10. PubMed ID: 117752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic degradation of polychlorinated biphenyls by Alcaligenes sp. JB1: metabolites and enzymes.
    Commandeur LC; May RJ; Mokross H; Bedard DL; Reineke W; Govers HA; Parsons JR
    Biodegradation; 1996-1997; 7(6):435-43. PubMed ID: 9188193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic distribution model of evaporation, biosorption and biodegradation of polychlorinated biphenyls (PCBs) in the suspension of Pseudomonas stutzeri.
    Dercová K; Vrana B; Baláz S
    Chemosphere; 1999 Mar; 38(6):1391-400. PubMed ID: 10070727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial dehalogenation of polychlorinated biphenyls in aerobic conditions.
    Aráoz B; Viale AA
    Rev Argent Microbiol; 2004; 36(1):47-51. PubMed ID: 15174750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of PCBs degradation abilities of biphenyl dioxygenase derived from Enterobacter sp. LY402 by molecular simulation.
    Cao YM; Xu L; Jia LY
    N Biotechnol; 2011 Dec; 29(1):90-8. PubMed ID: 21925295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The uridine diphosphate glucuronosyltransferases: quantitative structure-activity relationships for hydroxyl polychlorinated biphenyl substrates.
    Wang D
    Arch Toxicol; 2005 Oct; 79(10):554-60. PubMed ID: 15889236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial degradation of polychlorinated biphenyls: biochemical and molecular features.
    Furukawa K; Fujihara H
    J Biosci Bioeng; 2008 May; 105(5):433-49. PubMed ID: 18558332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding modes of PCBs to a degrading enzyme: a receptor-mapping study.
    Hornák V; Baláz S; Májeková M
    Gen Physiol Biophys; 1998 Jun; 17(2):105-16. PubMed ID: 9785099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial degradation of synthetic organochlorine compounds.
    Motosugi K; Soda K
    Experientia; 1983 Nov; 39(11):1214-20. PubMed ID: 6416886
    [No Abstract]   [Full Text] [Related]  

  • 12. Relationships between biological potency and electronic states of polychlorinated dibenzofurans and polychlorinated biphenyls.
    Kobayashi S; Shigihara A; Ichikawa H; Tanaka A; Tobinaga S
    Chem Pharm Bull (Tokyo); 1992 Nov; 40(11):3062-6. PubMed ID: 1477923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of extracellular and intracellular enzymes of Ceriporia sp. ZLY-2010 for biodegradation of polychlorinated biphenyls (PCBs).
    Hong CY; Kim HY; Lee SY; Kim SH; Lee SM; Choi IG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(10):1280-91. PubMed ID: 23647119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the biosorption and biodegradation properties of Ensifer adhaerens: A potential agent to remove polychlorinated biphenyls from contaminated water.
    Xu L; Chen X; Li H; Hu F; Liang M
    J Hazard Mater; 2016 Jan; 302():314-322. PubMed ID: 26476319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partitioning of polychlorinated biphenyls into human cells and adipose tissues: evaluation of octanol, triolein, and liposomes as surrogates.
    Quinn CL; van der Heijden SA; Wania F; Jonker MT
    Environ Sci Technol; 2014 May; 48(10):5920-8. PubMed ID: 24806981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850.
    Bedard DL; Haberl ML; May RJ; Brennan MJ
    Appl Environ Microbiol; 1987 May; 53(5):1103-12. PubMed ID: 3111366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective accumulation of chiral polychlorinated biphenyls in lotus plant (Nelumbonucifera spp.).
    Dai S; Wong CS; Qiu J; Wang M; Chai T; Fan L; Yang S
    J Hazard Mater; 2014 Sep; 280():612-8. PubMed ID: 25218260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of seven polychlorinated biphenyls by a newly isolated aerobic bacterium (Rhodococcus sp. R04).
    Yang X; Sun Y; Qian S
    J Ind Microbiol Biotechnol; 2004 Oct; 31(9):415-20. PubMed ID: 15365854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of polychlorinated biphenyls by mixed microbial cultures.
    Clark RR; Chian ES; Griffin RA
    Appl Environ Microbiol; 1979 Apr; 37(4):680-5. PubMed ID: 110265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSPR models for predicting generator-column-derived octanol/water and octanol/air partition coefficients of polychlorinated biphenyls.
    Yuan J; Yu S; Zhang T; Yuan X; Cao Y; Yu X; Yang X; Yao W
    Ecotoxicol Environ Saf; 2016 Jun; 128():171-80. PubMed ID: 26943944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.