BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18154321)

  • 1. Differential GATA factor stabilities: implications for chromatin occupancy by structurally similar transcription factors.
    Lurie LJ; Boyer ME; Grass JA; Bresnick EH
    Biochemistry; 2008 Jan; 47(3):859-69. PubMed ID: 18154321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct functions of dispersed GATA factor complexes at an endogenous gene locus.
    Grass JA; Jing H; Kim SI; Martowicz ML; Pal S; Blobel GA; Bresnick EH
    Mol Cell Biol; 2006 Oct; 26(19):7056-67. PubMed ID: 16980610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid turnover of GATA-2 via ubiquitin-proteasome protein degradation pathway.
    Minegishi N; Suzuki N; Kawatani Y; Shimizu R; Yamamoto M
    Genes Cells; 2005 Jul; 10(7):693-704. PubMed ID: 15966900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylation of GATA-1 is required for chromatin occupancy.
    Lamonica JM; Vakoc CR; Blobel GA
    Blood; 2006 Dec; 108(12):3736-8. PubMed ID: 16888089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking differential chromatin loops to transcriptional decisions.
    Apostolou E; Thanos D
    Mol Cell; 2008 Feb; 29(2):154-6. PubMed ID: 18243110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy.
    Fujiwara T; O'Geen H; Keles S; Blahnik K; Linnemann AK; Kang YA; Choi K; Farnham PJ; Bresnick EH
    Mol Cell; 2009 Nov; 36(4):667-81. PubMed ID: 19941826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GATA-1-mediated transcriptional repression yields persistent transcription factor IIB-chromatin complexes.
    Martowicz ML; Grass JA; Bresnick EH
    J Biol Chem; 2006 Dec; 281(49):37345-52. PubMed ID: 16963445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling hematopoiesis through sumoylation-dependent regulation of a GATA factor.
    Lee HY; Johnson KD; Fujiwara T; Boyer ME; Kim SI; Bresnick EH
    Mol Cell; 2009 Dec; 36(6):984-95. PubMed ID: 20064464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus.
    Jing H; Vakoc CR; Ying L; Mandat S; Wang H; Zheng X; Blobel GA
    Mol Cell; 2008 Feb; 29(2):232-42. PubMed ID: 18243117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin domain activation via GATA-1 utilization of a small subset of dispersed GATA motifs within a broad chromosomal region.
    Im H; Grass JA; Johnson KD; Kim SI; Boyer ME; Imbalzano AN; Bieker JJ; Bresnick EH
    Proc Natl Acad Sci U S A; 2005 Nov; 102(47):17065-70. PubMed ID: 16286657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis.
    Doré LC; Chlon TM; Brown CD; White KP; Crispino JD
    Blood; 2012 Apr; 119(16):3724-33. PubMed ID: 22383799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling.
    Grass JA; Boyer ME; Pal S; Wu J; Weiss MJ; Bresnick EH
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8811-6. PubMed ID: 12857954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GATA switches as developmental drivers.
    Bresnick EH; Lee HY; Fujiwara T; Johnson KD; Keles S
    J Biol Chem; 2010 Oct; 285(41):31087-93. PubMed ID: 20670937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GATA-1 and GATA-2 binding to 3' enhancer of WT1 gene is essential for its transcription in acute leukemia and solid tumor cell lines.
    Furuhata A; Murakami M; Ito H; Gao S; Yoshida K; Sobue S; Kikuchi R; Iwasaki T; Takagi A; Kojima T; Suzuki M; Abe A; Naoe T; Murate T
    Leukemia; 2009 Jul; 23(7):1270-7. PubMed ID: 19212333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation.
    Suzuki M; Kobayashi-Osaki M; Tsutsumi S; Pan X; Ohmori S; Takai J; Moriguchi T; Ohneda O; Ohneda K; Shimizu R; Kanki Y; Kodama T; Aburatani H; Yamamoto M
    Genes Cells; 2013 Nov; 18(11):921-33. PubMed ID: 23911012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor necrosis factor alpha inhibits erythroid differentiation in human erythropoietin-dependent cells involving p38 MAPK pathway, GATA-1 and FOG-1 downregulation and GATA-2 upregulation.
    Buck I; Morceau F; Cristofanon S; Heintz C; Chateauvieux S; Reuter S; Dicato M; Diederich M
    Biochem Pharmacol; 2008 Nov; 76(10):1229-39. PubMed ID: 18805401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting molecular steps in chromatin domain activation during hematopoietic differentiation.
    Kim SI; Bultman SJ; Jing H; Blobel GA; Bresnick EH
    Mol Cell Biol; 2007 Jun; 27(12):4551-65. PubMed ID: 17438135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cofactor-mediated restriction of GATA-1 chromatin occupancy coordinates lineage-specific gene expression.
    Chlon TM; Doré LC; Crispino JD
    Mol Cell; 2012 Aug; 47(4):608-21. PubMed ID: 22771118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coregulator-dependent facilitation of chromatin occupancy by GATA-1.
    Pal S; Cantor AB; Johnson KD; Moran TB; Boyer ME; Orkin SH; Bresnick EH
    Proc Natl Acad Sci U S A; 2004 Jan; 101(4):980-5. PubMed ID: 14715908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cell senescence inducing gene product MORF4 is regulated by degradation via the ubiquitin/proteasome pathway.
    Tominaga K; Tominaga E; Ausserlechner MJ; Pereira-Smith OM
    Exp Cell Res; 2010 Jan; 316(1):92-102. PubMed ID: 19769966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.