These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 18154338)

  • 1. Low-level self-assembly of open framework based on three different polyhedra: metal-organic analogue of face-centered cubic dodecaboride.
    Chun H
    J Am Chem Soc; 2008 Jan; 130(3):800-1. PubMed ID: 18154338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu6S4 cluster based twelve-connected face-centered cubic and Cu19I4S12 cluster based fourteen-connected body-centered cubic topological coordination polymers.
    Hao ZM; Fang RQ; Wu HS; Zhang XM
    Inorg Chem; 2008 Sep; 47(18):8197-203. PubMed ID: 18693684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular Archimedean cages assembled with 72 hydrogen bonds.
    Liu Y; Hu C; Comotti A; Ward MD
    Science; 2011 Jul; 333(6041):436-40. PubMed ID: 21778396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicomponent self-assembly of a nested Co24 @Co48 metal-organic polyhedral framework.
    Zheng ST; Wu T; Irfanoglu B; Zuo F; Feng P; Bu X
    Angew Chem Int Ed Engl; 2011 Aug; 50(35):8034-7. PubMed ID: 21761532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isoreticular metal-organic polyhedral networks based on 5-connecting paddlewheel motifs.
    Chun H; Jung H; Seo J
    Inorg Chem; 2009 Mar; 48(5):2043-7. PubMed ID: 19235965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous metal-organic frameworks based on metal-organic polyhedra with nanosized cavities as supramolecular building blocks: two-fold interpenetrating primitive cubic networks of [Cu6L8]12+ nanocages.
    Park J; Hong S; Moon D; Park M; Lee K; Kang S; Zou Y; John RP; Kim GH; Lah MS
    Inorg Chem; 2007 Nov; 46(24):10208-13. PubMed ID: 17973371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A designed metal-organic framework based on a metal-organic polyhedron.
    Zou Y; Park M; Hong S; Lah MS
    Chem Commun (Camb); 2008 May; (20):2340-2. PubMed ID: 18473063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks.
    Prakash MJ; Lah MS
    Chem Commun (Camb); 2009 Jun; (23):3326-41. PubMed ID: 19503863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A twelve-connected Cu6S4 cluster-based coordination polymer.
    Zhang XM; Fang RQ; Wu HS
    J Am Chem Soc; 2005 Jun; 127(21):7670-1. PubMed ID: 15913344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reticular chemistry of metal-organic polyhedra.
    Tranchemontagne DJ; Ni Z; O'Keeffe M; Yaghi OM
    Angew Chem Int Ed Engl; 2008; 47(28):5136-47. PubMed ID: 18528833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentric Archimedean polyhedra: Mn(III)12Mn(II)9 aggregates linked into a cubic network.
    Nayak S; Lan Y; Clérac R; Anson CE; Powell AK
    Chem Commun (Camb); 2008 Nov; (44):5698-700. PubMed ID: 19009052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of polyoxometalate-based metal organic frameworks based on octamolybdates and copper-organic units: from Cu(II), Cu(I,II) to Cu(I) via changing organic amine.
    Lan YQ; Li SL; Wang XL; Shao KZ; Du DY; Zang HY; Su ZM
    Inorg Chem; 2008 Sep; 47(18):8179-87. PubMed ID: 18698762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational assembly of primitive cubic networks using hexameric stacks of sodium aryloxides as nodes.
    MacDougall DJ; Noll BC; Henderson KW
    Inorg Chem; 2005 Mar; 44(5):1181-3. PubMed ID: 15732951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid organic-inorganic framework structures: influence of cation size on metal-oxygen-metal connectivity in the alkaline earth thiazolothiazoledicarboxylates.
    Falcão EH; Naraso ; Feller RK; Wu G; Wudl F; Cheetham AK
    Inorg Chem; 2008 Sep; 47(18):8336-42. PubMed ID: 18712861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Edge-directed [(M2)2L4] tetragonal metal-organic polyhedra decorated using a square paddle-wheel secondary building unit.
    Prakash MJ; Oh M; Liu X; Han KN; Seong GH; Lah MS
    Chem Commun (Camb); 2010 Mar; 46(12):2049-51. PubMed ID: 20221488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous self-assembly of metal-organic cationic nanocages to form monodisperse hollow vesicles in dilute solutions.
    Li D; Zhang J; Landskron K; Liu T
    J Am Chem Soc; 2008 Apr; 130(13):4226-7. PubMed ID: 18331038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks.
    Perry JJ; Perman JA; Zaworotko MJ
    Chem Soc Rev; 2009 May; 38(5):1400-17. PubMed ID: 19384444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediate crystalline structures of colloids in shape space.
    Klotsa D; Chen ER; Engel M; Glotzer SC
    Soft Matter; 2018 Nov; 14(43):8692-8697. PubMed ID: 30204209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies.
    Luo J; Xu H; Liu Y; Zhao Y; Daemen LL; Brown C; Timofeeva TV; Ma S; Zhou HC
    J Am Chem Soc; 2008 Jul; 130(30):9626-7. PubMed ID: 18611006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of different dimensional inorganic-organic hybrid materials based on polyoxometalates and metal-organic units via changing metal ions: from non-covalent interactions to covalent connections.
    Lan YQ; Li SL; Shao KZ; Wang XL; Su ZM
    Dalton Trans; 2008 Aug; (29):3824-35. PubMed ID: 18629404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.