These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18154360)

  • 1. Structural analysis of the catalytic mechanism and stereoselectivity in Streptomyces coelicolor alditol oxidase.
    Forneris F; Heuts DP; Delvecchio M; Rovida S; Fraaije MW; Mattevi A
    Biochemistry; 2008 Jan; 47(3):978-85. PubMed ID: 18154360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery, characterization, and kinetic analysis of an alditol oxidase from Streptomyces coelicolor.
    Heuts DP; van Hellemond EW; Janssen DB; Fraaije MW
    J Biol Chem; 2007 Jul; 282(28):20283-91. PubMed ID: 17517896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization and preliminary X-ray analysis of an alditol oxidase from Streptomyces coelicolor A3(2).
    Forneris F; Rovida S; Heuts DP; Fraaije MW; Mattevi A
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Dec; 62(Pt 12):1298-300. PubMed ID: 17142922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple pathways guide oxygen diffusion into flavoenzyme active sites.
    Baron R; Riley C; Chenprakhon P; Thotsaporn K; Winter RT; Alfieri A; Forneris F; van Berkel WJ; Chaiyen P; Fraaije MW; Mattevi A; McCammon JA
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10603-8. PubMed ID: 19541622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures and inhibitor binding in the octameric flavoenzyme vanillyl-alcohol oxidase: the shape of the active-site cavity controls substrate specificity.
    Mattevi A; Fraaije MW; Mozzarelli A; Olivi L; Coda A; van Berkel WJ
    Structure; 1997 Jul; 5(7):907-20. PubMed ID: 9261083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent flavinylation is essential for efficient redox catalysis in vanillyl-alcohol oxidase.
    Fraaije MW; van den Heuvel RH; van Berkel WJ; Mattevi A
    J Biol Chem; 1999 Dec; 274(50):35514-20. PubMed ID: 10585424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of alpha-glycerophosphate oxidase from Streptococcus sp.: a template for the mitochondrial alpha-glycerophosphate dehydrogenase.
    Colussi T; Parsonage D; Boles W; Matsuoka T; Mallett TC; Karplus PA; Claiborne A
    Biochemistry; 2008 Jan; 47(3):965-77. PubMed ID: 18154320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase.
    Fernández IS; Ruíz-Dueñas FJ; Santillana E; Ferreira P; Martínez MJ; Martínez AT; Romero A
    Acta Crystallogr D Biol Crystallogr; 2009 Nov; 65(Pt 11):1196-205. PubMed ID: 19923715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the 270 kDa homotetrameric lignin-degrading enzyme pyranose 2-oxidase.
    Hallberg BM; Leitner C; Haltrich D; Divne C
    J Mol Biol; 2004 Aug; 341(3):781-96. PubMed ID: 15288786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of Michaelis and product complexes of plant cytokinin dehydrogenase: implications for flavoenzyme catalysis.
    Malito E; Coda A; Bilyeu KD; Fraaije MW; Mattevi A
    J Mol Biol; 2004 Aug; 341(5):1237-49. PubMed ID: 15321719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional studies on SCO1815: a beta-ketoacyl-acyl carrier protein reductase from Streptomyces coelicolor A3(2).
    Tang Y; Lee HY; Tang Y; Kim CY; Mathews I; Khosla C
    Biochemistry; 2006 Nov; 45(47):14085-93. PubMed ID: 17115703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalization of oxidases with peroxidase activity creates oxiperoxidases: a new breed of hybrid enzyme capable of cascade chemistry.
    Winter RT; van den Berg TE; Colpa DI; van Bloois E; Fraaije MW
    Chembiochem; 2012 Jan; 13(2):252-8. PubMed ID: 22213198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The X-ray structure of N-methyltryptophan oxidase reveals the structural determinants of substrate specificity.
    Ilari A; Bonamore A; Franceschini S; Fiorillo A; Boffi A; Colotti G
    Proteins; 2008 Jun; 71(4):2065-75. PubMed ID: 18186483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidations of the catalytic cycle of NADH-cytochrome b5 reductase by X-ray crystallography: new insights into regulation of efficient electron transfer.
    Yamada M; Tamada T; Takeda K; Matsumoto F; Ohno H; Kosugi M; Takaba K; Shoyama Y; Kimura S; Kuroki R; Miki K
    J Mol Biol; 2013 Nov; 425(22):4295-306. PubMed ID: 23831226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of cytochrome P450 CYP105N1 from Streptomyces coelicolor, an oxidase in the coelibactin siderophore biosynthetic pathway.
    Lim YR; Hong MK; Kim JK; Doan TT; Kim DH; Yun CH; Chun YJ; Kang LW; Kim D
    Arch Biochem Biophys; 2012 Dec; 528(2):111-7. PubMed ID: 23000034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants.
    Yue QK; Kass IJ; Sampson NS; Vrielink A
    Biochemistry; 1999 Apr; 38(14):4277-86. PubMed ID: 10194345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric synthesis of D-glyceric acid by an alditol oxidase and directed evolution for enhanced oxidative activity towards glycerol.
    Gerstenbruch S; Wulf H; Mussmann N; O'Connell T; Maurer KH; Bornscheuer UT
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1243-52. PubMed ID: 22290646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for substrate recognition and specificity in aklavinone-11-hydroxylase from rhodomycin biosynthesis.
    Lindqvist Y; Koskiniemi H; Jansson A; Sandalova T; Schnell R; Liu Z; Mäntsälä P; Niemi J; Schneider G
    J Mol Biol; 2009 Nov; 393(4):966-77. PubMed ID: 19744497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and D-xylose.
    Whitlow M; Howard AJ; Finzel BC; Poulos TL; Winborne E; Gilliland GL
    Proteins; 1991; 9(3):153-73. PubMed ID: 2006134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.