BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 18154397)

  • 1. The vibrational spectra of protonated water clusters: a benchmark for self-consistent-charge density-functional tight binding.
    Yu H; Cui Q
    J Chem Phys; 2007 Dec; 127(23):234504. PubMed ID: 18154397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eigen and Zundel forms of small protonated water clusters: structures and infrared spectra.
    Park M; Shin I; Singh NJ; Kim KS
    J Phys Chem A; 2007 Oct; 111(42):10692-702. PubMed ID: 17910422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: vibrational spectra and electronic structure of C(28), C(60), and C(70).
    Witek HA; Irle S; Zheng G; de Jong WA; Morokuma K
    J Chem Phys; 2006 Dec; 125(21):214706. PubMed ID: 17166039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling vibrational spectra using the self-consistent charge density-functional tight-binding method. I. Raman spectra.
    Witek HA; Morokuma K; Stradomska A
    J Chem Phys; 2004 Sep; 121(11):5171-8. PubMed ID: 15352809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the relationship between infrared spectra of shared protons in different chemical environments: a comparison of protonated diglyme and protonated water dimer.
    Lammers S; Meuwly M
    J Phys Chem A; 2007 Mar; 111(9):1638-47. PubMed ID: 17295453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full dimensional (15 dimensional) quantum-dynamical simulation of the protonated water-dimer IV: isotope effects in the infrared spectra of D(D2O)2(+), H(D2O)2(+), and D(H2O)2(+) isotopologues.
    Vendrell O; Gatti F; Meyer HD
    J Chem Phys; 2009 Jul; 131(3):034308. PubMed ID: 19624198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The properties of ion-water clusters. I. The protonated 21-water cluster.
    Iyengar SS; Petersen MK; Day TJ; Burnham CJ; Teige VE; Voth GA
    J Chem Phys; 2005 Aug; 123(8):084309. PubMed ID: 16164293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio molecular dynamics of protonated dialanine and comparison to infrared multiphoton dissociation experiments.
    Marinica DC; Grégoire G; Desfrançois C; Schermann JP; Borgis D; Gaigeot MP
    J Phys Chem A; 2006 Jul; 110(28):8802-10. PubMed ID: 16836443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance.
    Polfer NC; Oomens J
    Mass Spectrom Rev; 2009; 28(3):468-94. PubMed ID: 19241457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Torsional potentials and full-dimensional simulation of electronic absorption and fluorescence spectra of para-phenylene oligomers using the semiempirical self-consistent charge density-functional tight binding approach.
    Lukes V; Solc R; Barbatti M; Elstner M; Lischka H; Kauffmann HF
    J Chem Phys; 2008 Oct; 129(16):164905. PubMed ID: 19045312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures and dynamics of protonated ammonia clusters.
    Fouqueau A; Meuwly M
    J Chem Phys; 2005 Dec; 123(24):244308. PubMed ID: 16396538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (SCC-DFTB) method: applications to structural and energetic analysis.
    Elstner M; Cui Q; Munih P; Kaxiras E; Frauenheim T; Karplus M
    J Comput Chem; 2003 Apr; 24(5):565-81. PubMed ID: 12632471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational studies of aqueous-phase photochemistry and the hydrated electron in finite-size clusters.
    Sobolewski AL; Domcke W
    Phys Chem Chem Phys; 2007 Aug; 9(29):3818-29. PubMed ID: 17637974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational spectroscopy of protonated imidazole and its complexes with water molecules: ab initio anharmonic calculations and experiments.
    Adesokan AA; Chaban GM; Dopfer O; Gerber RB
    J Phys Chem A; 2007 Aug; 111(31):7374-81. PubMed ID: 17500546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.
    Vendrell O; Brill M; Gatti F; Lauvergnat D; Meyer HD
    J Chem Phys; 2009 Jun; 130(23):234305. PubMed ID: 19548725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton transfer reactions and dynamics in protonated water clusters.
    Lao-Ngam C; Asawakun P; Wannarat S; Sagarik K
    Phys Chem Chem Phys; 2011 Mar; 13(10):4562-75. PubMed ID: 21283848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic study of vibrational frequencies calculated with the self-consistent charge density functional tight-binding method.
    Witek HA; Morokuma K
    J Comput Chem; 2004 Nov; 25(15):1858-64. PubMed ID: 15376252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the SCC-DFTB method to H+(H2O)6, H+(H2O)21, and H+(H2O)22.
    Choi TH; Jordan KD
    J Phys Chem B; 2010 May; 114(20):6932-6. PubMed ID: 20433189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared spectroscopy of small protonated water clusters at room temperature: an effective modes analysis.
    Agostini F; Vuilleumier R; Ciccotti G
    J Chem Phys; 2011 Feb; 134(8):084302. PubMed ID: 21361534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.