These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18154982)

  • 1. Two-column simulated moving-bed process for binary separation.
    Rodrigues RC; Canhoto TJ; Araújo JM; Mota JP
    J Chromatogr A; 2008 Feb; 1180(1-2):42-52. PubMed ID: 18154982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streamlined, two-column, simulated countercurrent chromatography for binary separation.
    Rodrigues RC; Silva RJ; Mota JP
    J Chromatogr A; 2010 May; 1217(20):3382-91. PubMed ID: 20356598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal design and experimental validation of synchronous, asynchronous and flow-modulated, simulated moving-bed processes using a single-column setup.
    Rodrigues RC; Araújo JM; Mota JP
    J Chromatogr A; 2007 Aug; 1162(1):14-23. PubMed ID: 17306808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral separation by two-column, semi-continuous, open-loop simulated moving-bed chromatography.
    Araújo JM; Rodrigues RC; Eusébio MF; Mota JP
    J Chromatogr A; 2010 Aug; 1217(33):5407-19. PubMed ID: 20619843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental assessment of simulated moving bed and varicol processes using a single-column setup.
    Rodrigues RC; Araújo JM; Eusébio MF; Mota JP
    J Chromatogr A; 2007 Feb; 1142(1):69-80. PubMed ID: 17095001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized design of recycle chromatography to isolate intermediate retained solutes in ternary mixtures: Langmuir isotherm systems.
    Lee JW; Wankat PC
    J Chromatogr A; 2009 Oct; 1216(41):6946-56. PubMed ID: 19733356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal design and operation of a certain class of asynchronous simulated moving bed processes.
    Araújo JM; Rodrigues RC; Mota JP
    J Chromatogr A; 2006 Nov; 1132(1-2):76-89. PubMed ID: 16876807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittent simulated moving bed chromatography: 3. Separation of Tröger's base enantiomers under nonlinear conditions.
    Katsuo S; Langel C; Sandré AL; Mazzotti M
    J Chromatogr A; 2011 Dec; 1218(52):9345-52. PubMed ID: 22119673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategy of rearranging the port locations in a three-zone simulated moving bed chromatography for binary separation with linear isotherms.
    Mun S
    J Chromatogr A; 2012 Mar; 1230():100-9. PubMed ID: 22333683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of pseudo-simulated moving bed process with multi-objective optimization for the separation of a ternary mixture: linear isotherms.
    Lee JW; Wankat PC
    J Chromatogr A; 2010 May; 1217(20):3418-26. PubMed ID: 20363474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backfill-simulated moving bed operation for improving the separation performance of simulated moving bed chromatography.
    Kim KM; Lee CH
    J Chromatogr A; 2013 Oct; 1311():79-89. PubMed ID: 24007684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing control of simulated moving beds--experimental implementation.
    Abel S; Erdem G; Amanullah M; Morari M; Mazzotti M; Morbidelli M
    J Chromatogr A; 2005 Oct; 1092(1):2-16. PubMed ID: 16188555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermittent simulated moving bed chromatography: 2. Separation of Tröger's base enantiomers.
    Katsuo S; Mazzotti M
    J Chromatogr A; 2010 Apr; 1217(18):3067-75. PubMed ID: 20346456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermittent simulated moving bed chromatography: 1. Design criteria and cyclic steady-state.
    Katsuo S; Mazzotti M
    J Chromatogr A; 2010 Feb; 1217(8):1354-61. PubMed ID: 20079906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparative-scale separation by simulated moving bed chromatography of biocatalytically produced regioisomeric lactones.
    Kaiser P; Ottolina G; Carrea G; Wohlgemuth R
    N Biotechnol; 2009 Apr; 25(4):220-5. PubMed ID: 19429542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulated moving bed chromatography for the separation of enantiomers.
    Rajendran A; Paredes G; Mazzotti M
    J Chromatogr A; 2009 Jan; 1216(4):709-38. PubMed ID: 19004446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the performance of pilot-scale countercurrent chromatography: scale-up predictions and experimental verification of erythromycin separation.
    Booth AJ; Sutherland IA; Lye GJ
    Biotechnol Bioeng; 2003 Mar; 81(6):640-9. PubMed ID: 12529878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Step gradients in 3-zone simulated moving bed chromatography. Application to the purification of antibodies and bone morphogenetic protein-2.
    Kessler LC; Gueorguieva L; Rinas U; Seidel-Morgenstern A
    J Chromatogr A; 2007 Dec; 1176(1-2):69-78. PubMed ID: 18036537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of an eremomycin-chiral stationary phase for the separation of DL-methionine using simulated moving bed technology.
    Zhang L; Gedicke K; Kuznetsov MA; Staroverov SM; Seidel-Morgenstern A
    J Chromatogr A; 2007 Aug; 1162(1):90-6. PubMed ID: 17482626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-line enantiomeric analysis using high-performance liquid chromatography in chiral separation by simulated moving bed.
    Araújo JM; Rodrigues RC; Eusébio MF; Mota JP
    J Chromatogr A; 2008 May; 1189(1-2):292-301. PubMed ID: 18035365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.