These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

600 related articles for article (PubMed ID: 18155235)

  • 61. A direct regulatory role for troponin T and a dual role for troponin C in the Ca2+ regulation of muscle contraction.
    Potter JD; Sheng Z; Pan BS; Zhao J
    J Biol Chem; 1995 Feb; 270(6):2557-62. PubMed ID: 7852318
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The rates of switching movement of troponin T between three states of skeletal muscle thin filaments determined by fluorescence resonance energy transfer.
    Shitaka Y; Kimura C; Miki M
    J Biol Chem; 2005 Jan; 280(4):2613-9. PubMed ID: 15548522
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction.
    Tripet B; Van Eyk JE; Hodges RS
    J Mol Biol; 1997 Sep; 271(5):728-50. PubMed ID: 9299323
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Binding of troponin I and the troponin I-troponin C complex to actin-tropomyosin. Dissociation by myosin subfragment 1.
    Zhou X; Morris EP; Lehrer SS
    Biochemistry; 2000 Feb; 39(5):1128-32. PubMed ID: 10653659
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Calcium-induced troponin flexibility revealed by distance distribution measurements between engineered sites.
    Zhao X; Kobayashi T; Malak H; Gryczynski I; Lakowicz J; Wade R; Collins JH
    J Biol Chem; 1995 Jun; 270(26):15507-14. PubMed ID: 7797544
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Proximity relationships between residue 117 of rabbit skeletal troponin-I and residues in troponin-C and actin.
    Li Z; Gergely J; Tao T
    Biophys J; 2001 Jul; 81(1):321-33. PubMed ID: 11423417
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effects of MCI-154 and caffeine on Ca(++)-regulated interactions between troponin subunits from bovine heart.
    Liao R; Gwathmey JK
    J Pharmacol Exp Ther; 1994 Aug; 270(2):831-9. PubMed ID: 8071875
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Kinetics of the structural transition of muscle thin filaments observed by fluorescence resonance energy transfer.
    Shitaka Y; Kimura C; Iio T; Miki M
    Biochemistry; 2004 Aug; 43(33):10739-47. PubMed ID: 15311935
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Troponin Structural Dynamics in the Native Cardiac Thin Filament Revealed by Cryo Electron Microscopy.
    Risi CM; Belknap B; Atherton J; Coscarella IL; White HD; Bryant Chase P; Pinto JR; Galkin VE
    J Mol Biol; 2024 Mar; 436(6):168498. PubMed ID: 38387550
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Co-operative activation of skeletal muscle thin filaments by rigor crossbridges. The effect of troponin C extraction.
    Brandt PW; Roemer D; Schachat FH
    J Mol Biol; 1990 Apr; 212(3):473-80. PubMed ID: 2325129
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Millisecond photo-cross-linking of protein components in vertebrate striated muscle thin filaments.
    Sutoh K; Matsuzaki F
    Biochemistry; 1980 Aug; 19(16):3878-82. PubMed ID: 6447509
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Investigation of the effects of phosphorylation of rabbit striated muscle alpha alpha-tropomyosin and rabbit skeletal muscle troponin-T.
    Heeley DH
    Eur J Biochem; 1994 Apr; 221(1):129-37. PubMed ID: 8168502
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Calcium-induced flexibility changes in the troponin C-troponin I complex.
    Zhao X; Kobayashi T; Gryczynski Z; Gryczynski I; Lakowicz J; Wade R; Collins JH
    Biochim Biophys Acta; 2000 Jun; 1479(1-2):247-54. PubMed ID: 11004542
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dilated cardiomyopathy mutant tropomyosin mice develop cardiac dysfunction with significantly decreased fractional shortening and myofilament calcium sensitivity.
    Rajan S; Ahmed RP; Jagatheesan G; Petrashevskaya N; Boivin GP; Urboniene D; Arteaga GM; Wolska BM; Solaro RJ; Liggett SB; Wieczorek DF
    Circ Res; 2007 Jul; 101(2):205-14. PubMed ID: 17556658
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The role of the NH(2)- and COOH-terminal domains of the inhibitory region of troponin I in the regulation of skeletal muscle contraction.
    Szczesna D; Zhang R; Zhao J; Jones M; Potter JD
    J Biol Chem; 1999 Oct; 274(41):29536-42. PubMed ID: 10506219
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The troponin complex and regulation of muscle contraction.
    Farah CS; Reinach FC
    FASEB J; 1995 Jun; 9(9):755-67. PubMed ID: 7601340
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Differential mobility of skeletal and cardiac tropomyosin on the surface of F-actin.
    Chandy IK; Lo JC; Ludescher RD
    Biochemistry; 1999 Jul; 38(29):9286-94. PubMed ID: 10413502
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of different troponin T-tropomyosin combinations on thin filament activation.
    Schachat FH; Diamond MS; Brandt PW
    J Mol Biol; 1987 Dec; 198(3):551-4. PubMed ID: 3430619
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Calcium structural transition of troponin in the complexes, on the thin filament, and in muscle fibres, as studied by site-directed spin-labelling EPR.
    Arata T; Aihara T; Ueda K; Nakamura M; Ueki S
    Adv Exp Med Biol; 2007; 592():125-35. PubMed ID: 17278361
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The crystal structure of troponin C in complex with N-terminal fragment of troponin I. The mechanism of how the inhibitory action of troponin I is released by Ca(2+)-binding to troponin C.
    Vassylyev DG; Takeda S; Wakatsuki S; Maeda K; MaƩda Y
    Adv Exp Med Biol; 1998; 453():157-67. PubMed ID: 9889826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.