BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 18155242)

  • 1. Determination of electrostatic interaction energies and protonation state populations in enzyme active sites.
    Søndergaard CR; McIntosh LP; Pollastri G; Nielsen JE
    J Mol Biol; 2008 Feb; 376(1):269-87. PubMed ID: 18155242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase.
    Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP
    Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of pKa values and titration shifts in the cytotoxic ribonuclease alpha-sarcin by NMR. Relationship between electrostatic interactions, structure, and catalytic function.
    Pérez-Cañadillas JM; Campos-Olivas R; Lacadena J; Martínez del Pozo A; Gavilanes JG; Santoro J; Rico M; Bruix M
    Biochemistry; 1998 Nov; 37(45):15865-76. PubMed ID: 9843392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing enzymatic pH activity profiles and protein titration curves using structure-based pKa calculations and titration curve fitting.
    Nielsen JE
    Methods Enzymol; 2009; 454():233-58. PubMed ID: 19216929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-range nature of the interactions between titratable groups in Bacillus agaradhaerens family 11 xylanase: pH titration of B. agaradhaerens xylanase.
    Betz M; Löhr F; Wienk H; Rüterjans H
    Biochemistry; 2004 May; 43(19):5820-31. PubMed ID: 15134456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins.
    Foloppe N; Sagemark J; Nordstrand K; Berndt KD; Nilsson L
    J Mol Biol; 2001 Jul; 310(2):449-70. PubMed ID: 11428900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-dependent pKa values in proteins--a theoretical analysis of protonation energies with practical consequences for enzymatic reactions.
    Bombarda E; Ullmann GM
    J Phys Chem B; 2010 Feb; 114(5):1994-2003. PubMed ID: 20088566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical criteria for the identification of protein active sites using Theoretical Microscopic Titration Curves.
    Ko J; Murga LF; André P; Yang H; Ondrechen MJ; Williams RJ; Agunwamba A; Budil DE
    Proteins; 2005 May; 59(2):183-95. PubMed ID: 15739204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting structural and electrostatic interactions of charged groups in alpha-sarcin. An NMR study of some mutants involving the catalytic residues.
    García-Mayoral MF; Pérez-Cañadillas JM; Santoro J; Ibarra-Molero B; Sanchez-Ruiz JM; Lacadena J; Martínez del Pozo A; Gavilanes JG; Rico M; Bruix M
    Biochemistry; 2003 Nov; 42(45):13122-33. PubMed ID: 14609322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculations of electrostatic interactions and pKas in the active site of Escherichia coli thioredoxin.
    Dillet V; Dyson HJ; Bashford D
    Biochemistry; 1998 Jul; 37(28):10298-306. PubMed ID: 9665738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigations of Sso7d catalytic residues by NMR titration shifts and electrostatic calculations.
    Consonni R; Arosio I; Belloni B; Fogolari F; Fusi P; Shehi E; Zetta L
    Biochemistry; 2003 Feb; 42(6):1421-9. PubMed ID: 12578354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic pKa values of Escherichia coli thioredoxin.
    Chivers PT; Prehoda KE; Volkman BF; Kim BM; Markley JL; Raines RT
    Biochemistry; 1997 Dec; 36(48):14985-91. PubMed ID: 9398223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the pH dependence of protein stability.
    Yang AS; Honig B
    J Mol Biol; 1993 May; 231(2):459-74. PubMed ID: 8510157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational method for relative binding energies of enzyme-substrate complexes.
    Zhang T; Koshland DE
    Protein Sci; 1996 Feb; 5(2):348-56. PubMed ID: 8745413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mixed mechanistic-electrostatic model to explain pH dependence of glycosyl hydrolase enzyme activity.
    Olivera-Nappa A; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2004 Jun; 86(5):573-86. PubMed ID: 15129441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of perturbed pKa values of catalytic groups in enzyme active sites.
    Harris TK; Turner GJ
    IUBMB Life; 2002 Feb; 53(2):85-98. PubMed ID: 12049200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations.
    McIntosh LP; Naito D; Baturin SJ; Okon M; Joshi MD; Nielsen JE
    J Biomol NMR; 2011 Sep; 51(1-2):5-19. PubMed ID: 21947911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Titration_DB: storage and analysis of NMR-monitored protein pH titration curves.
    Farrell D; Miranda ES; Webb H; Georgi N; Crowley PB; McIntosh LP; Nielsen JE
    Proteins; 2010 Mar; 78(4):843-57. PubMed ID: 19899070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods.
    Bate P; Warwicker J
    J Mol Biol; 2004 Jul; 340(2):263-76. PubMed ID: 15201051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.