BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 18155473)

  • 21. Simultaneous imaging of multiple cellular events using high-accuracy fluorescence polarization microscopy.
    Kim SY; Arai Y; Tani T; Takatsuka H; Saito Y; Kawashima T; Kawakami S; Miyawaki A; Nagai T
    Microscopy (Oxf); 2017 Apr; 66(2):110-119. PubMed ID: 28043995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-color spectral FRET microscopy localizes three interacting proteins in living cells.
    Sun Y; Wallrabe H; Booker CF; Day RN; Periasamy A
    Biophys J; 2010 Aug; 99(4):1274-83. PubMed ID: 20713013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence resonance energy transfer microscopy (FRET).
    Kedziora KM; Jalink K
    Methods Mol Biol; 2015; 1251():67-82. PubMed ID: 25391795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Confocal microscopic dual-laser dual-polarization FRET (2polFRET) at the acceptor side for correlating rotations at different distances on the cell surface.
    Bene L; Gralle M; Damjanovich L
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1050-1068. PubMed ID: 29292190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A practical method for monitoring FRET-based biosensors in living animals using two-photon microscopy.
    Tao W; Rubart M; Ryan J; Xiao X; Qiao C; Hato T; Davidson MW; Dunn KW; Day RN
    Am J Physiol Cell Physiol; 2015 Dec; 309(11):C724-35. PubMed ID: 26333599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantification of protein interaction in living cells by two-photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleed-through.
    Kim J; Li X; Kang MS; Im KB; Genovesio A; Grailhe R
    Cytometry A; 2012 Feb; 81(2):112-9. PubMed ID: 22076866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fanciful FRET.
    Vogel SS; Thaler C; Koushik SV
    Sci STKE; 2006 Apr; 2006(331):re2. PubMed ID: 16622184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applying spectral fingerprinting to the analysis of FRET images.
    Neher RA; Neher E
    Microsc Res Tech; 2004 Jun; 64(2):185-95. PubMed ID: 15352090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements.
    George Abraham B; Sarkisyan KS; Mishin AS; Santala V; Tkachenko NV; Karp M
    PLoS One; 2015; 10(8):e0134436. PubMed ID: 26237400
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells.
    Squire A; Verveer PJ; Rocks O; Bastiaens PI
    J Struct Biol; 2004 Jul; 147(1):62-9. PubMed ID: 15109606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monitoring of dual bio-molecular events using FRET biosensors based on mTagBFP/sfGFP and mVenus/mKOκ fluorescent protein pairs.
    Su T; Pan S; Luo Q; Zhang Z
    Biosens Bioelectron; 2013 Aug; 46():97-101. PubMed ID: 23517824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of in vivo ROP GTPase activity at the subcellular level by fluorescence resonance energy transfer microscopy.
    Zhu L; Fu Y
    Methods Mol Biol; 2012; 876():145-52. PubMed ID: 22576092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescent protein FRET: the good, the bad and the ugly.
    Piston DW; Kremers GJ
    Trends Biochem Sci; 2007 Sep; 32(9):407-14. PubMed ID: 17764955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Förster resonance energy transfer (FRET) microscopy for monitoring biomolecular interactions.
    Mattheyses AL; Marcus AI
    Methods Mol Biol; 2015; 1278():329-39. PubMed ID: 25859959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen.
    McCullock TW; MacLean DM; Kammermeier PJ
    PLoS One; 2020; 15(2):e0219886. PubMed ID: 32023253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein localization in living cells and tissues using FRET and FLIM.
    Chen Y; Mills JD; Periasamy A
    Differentiation; 2003 Dec; 71(9-10):528-41. PubMed ID: 14686950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring FRET in flow cytometry and microscopy.
    Nagy P; Vereb G; Damjanovich S; Mátyus L; Szöllõsi J
    Curr Protoc Cytom; 2006 Nov; Chapter 12():Unit12.8. PubMed ID: 18770834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modern fluorescent proteins: from chromophore formation to novel intracellular applications.
    Stepanenko OV; Stepanenko OV; Shcherbakova DM; Kuznetsova IM; Turoverov KK; Verkhusha VV
    Biotechniques; 2011 Nov; 51(5):313-4, 316, 318 passim. PubMed ID: 22054544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.