These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 18155926)

  • 1. A hippocampal-parietal network for learning an ordered sequence.
    Van Opstal F; Verguts T; Orban GA; Fias W
    Neuroimage; 2008 Mar; 40(1):333-41. PubMed ID: 18155926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knowing about tools: neural correlates of tool familiarity and experience.
    Vingerhoets G
    Neuroimage; 2008 Apr; 40(3):1380-91. PubMed ID: 18280753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Navigation ability dependent neural activation in the human brain: an fMRI study.
    Ohnishi T; Matsuda H; Hirakata M; Ugawa Y
    Neurosci Res; 2006 Aug; 55(4):361-9. PubMed ID: 16735070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neural representation of extensively trained ordered sequences.
    Van Opstal F; Fias W; Peigneux P; Verguts T
    Neuroimage; 2009 Aug; 47(1):367-75. PubMed ID: 19376245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hippocampal activation during transitive inference in humans.
    Heckers S; Zalesak M; Weiss AP; Ditman T; Titone D
    Hippocampus; 2004; 14(2):153-62. PubMed ID: 15098721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and slow parietal pathways mediate spatial attention.
    Chambers CD; Payne JM; Stokes MG; Mattingley JB
    Nat Neurosci; 2004 Mar; 7(3):217-8. PubMed ID: 14983182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iconic memory and parietofrontal network: fMRI study using temporal integration.
    Saneyoshi A; Niimi R; Suetsugu T; Kaminaga T; Yokosawa K
    Neuroreport; 2011 Aug; 22(11):515-9. PubMed ID: 21673607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural substrates for visual pattern recognition learning in Igo.
    Itoh K; Kitamura H; Fujii Y; Nakada T
    Brain Res; 2008 Aug; 1227():162-73. PubMed ID: 18621033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI.
    de Vries PM; de Jong BM; Bohning DE; Walker JA; George MS; Leenders KL
    Brain Res; 2009 Aug; 1285():58-68. PubMed ID: 19523932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hippocampus activity differentiates good from poor learners of a novel lexicon.
    Breitenstein C; Jansen A; Deppe M; Foerster AF; Sommer J; Wolbers T; Knecht S
    Neuroimage; 2005 Apr; 25(3):958-68. PubMed ID: 15808996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent spontaneous activity identifies a hippocampal-parietal memory network.
    Vincent JL; Snyder AZ; Fox MD; Shannon BJ; Andrews JR; Raichle ME; Buckner RL
    J Neurophysiol; 2006 Dec; 96(6):3517-31. PubMed ID: 16899645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent changes in learning audiovisual associations: a single-trial fMRI study.
    Gonzalo D; Shallice T; Dolan R
    Neuroimage; 2000 Mar; 11(3):243-55. PubMed ID: 10694466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
    Bapi RS; Miyapuram KP; Graydon FX; Doya K
    Neuroimage; 2006 Aug; 32(2):714-27. PubMed ID: 16798015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Difficulty of perceptual spatiotemporal integration modulates the neural activity of left inferior parietal cortex.
    Assmus A; Marshall JC; Noth J; Zilles K; Fink GR
    Neuroscience; 2005; 132(4):923-7. PubMed ID: 15857698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recollective qualities modulate hippocampal activation during autobiographical memory retrieval.
    Addis DR; Moscovitch M; Crawley AP; McAndrews MP
    Hippocampus; 2004; 14(6):752-62. PubMed ID: 15318333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common and segregated neural pathways for the processing of symbolic and nonsymbolic numerical magnitude: an fMRI study.
    Holloway ID; Price GR; Ansari D
    Neuroimage; 2010 Jan; 49(1):1006-17. PubMed ID: 19666127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversation effects on neural mechanisms underlying reaction time to visual events while viewing a driving scene: fMRI analysis and asynchrony model.
    Hsieh L; Young RA; Bowyer SM; Moran JE; Genik RJ; Green CC; Chiang YR; Yu YJ; Liao CC; Seaman S
    Brain Res; 2009 Jan; 1251():162-75. PubMed ID: 18952070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional asymmetry of superior parietal lobule for working memory in the elderly.
    Otsuka Y; Osaka N; Osaka M
    Neuroreport; 2008 Sep; 19(14):1355-9. PubMed ID: 18766010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient and sustained brain activity during anticipatory visuospatial attention.
    Luks TL; Sun FT; Dale CL; Miller WL; Simpson GV
    Neuroreport; 2008 Jan; 19(2):155-9. PubMed ID: 18185100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning.
    Chein JM; Schneider W
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):607-23. PubMed ID: 16242923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.