These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 1815615)

  • 1. Thalamic short-term plasticity in the auditory system: associative returning of receptive fields in the ventral medial geniculate body.
    Edeline JM; Weinberger NM
    Behav Neurosci; 1991 Oct; 105(5):618-39. PubMed ID: 1815615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body.
    Edeline JM; Weinberger NM
    Behav Neurosci; 1992 Feb; 106(1):81-105. PubMed ID: 1554440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency-specific receptive field plasticity in the medial geniculate body induced by pavlovian fear conditioning is expressed in the anesthetized brain.
    Lennartz RC; Weinberger NM
    Behav Neurosci; 1992 Jun; 106(3):484-97. PubMed ID: 1616615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid development of learning-induced receptive field plasticity in the auditory cortex.
    Edeline JM; Pham P; Weinberger NM
    Behav Neurosci; 1993 Aug; 107(4):539-51. PubMed ID: 8397859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcortical adaptive filtering in the auditory system: associative receptive field plasticity in the dorsal medial geniculate body.
    Edeline JM; Weinberger NM
    Behav Neurosci; 1991 Feb; 105(1):154-75. PubMed ID: 2025387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning.
    Bakin JS; South DA; Weinberger NM
    Behav Neurosci; 1996 Oct; 110(5):905-13. PubMed ID: 8918994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterosynaptic long-term facilitation of sensory-evoked responses in the auditory cortex by stimulation of the magnocellular medial geniculate body in guinea pigs.
    Weinberger NM; Javid R; Lepan B
    Behav Neurosci; 1995 Feb; 109(1):10-7. PubMed ID: 7734065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discriminative long-term retention of rapidly induced multiunit changes in the hippocampus, medial geniculate and auditory cortex.
    Edeline JM; Neuenschwander-el Massioui N; Dutrieux G
    Behav Brain Res; 1990 Jul; 39(2):145-55. PubMed ID: 2167693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex.
    Condon CD; Weinberger NM
    Behav Neurosci; 1991 Jun; 105(3):416-30. PubMed ID: 1863363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex.
    Diamond DM; Weinberger NM
    Behav Neurosci; 1989 Jun; 103(3):471-94. PubMed ID: 2736064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Receptive field plasticity in the auditory cortex during frequency discrimination training: selective retuning independent of task difficulty.
    Edeline JM; Weinberger NM
    Behav Neurosci; 1993 Feb; 107(1):82-103. PubMed ID: 8447960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig.
    Bakin JS; Weinberger NM
    Brain Res; 1990 Dec; 536(1-2):271-86. PubMed ID: 2085753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning-induced physiological memory in adult primary auditory cortex: receptive fields plasticity, model, and mechanisms.
    Weinberger NM; Bakin JS
    Audiol Neurootol; 1998; 3(2-3):145-67. PubMed ID: 9575382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation at a site of auditory-somatosensory convergence in the medial geniculate nucleus is an effective unconditioned stimulus for fear conditioning.
    Cruikshank SJ; Edeline JM; Weinberger NM
    Behav Neurosci; 1992 Jun; 106(3):471-83. PubMed ID: 1616614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term retention of learning-induced receptive-field plasticity in the auditory cortex.
    Weinberger NM; Javid R; Lepan B
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2394-8. PubMed ID: 8460150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning-induced plasticity in the medial geniculate nucleus is expressed during paradoxical sleep.
    Hennevin E; Maho C; Hars B; Dutrieux G
    Behav Neurosci; 1993 Dec; 107(6):1018-30. PubMed ID: 8136055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological memory in primary auditory cortex: characteristics and mechanisms.
    Weinberger NM
    Neurobiol Learn Mem; 1998; 70(1-2):226-51. PubMed ID: 9753599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitization induced receptive field plasticity in the auditory cortex is independent of CS-modality.
    Bakin JS; Lepan B; Weinberger NM
    Brain Res; 1992 Apr; 577(2):226-35. PubMed ID: 1606497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term consolidation and retention of learning-induced tuning plasticity in the auditory cortex of the guinea pig.
    Galván VV; Weinberger NM
    Neurobiol Learn Mem; 2002 Jan; 77(1):78-108. PubMed ID: 11749087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cells in the rat auditory system have sensory-delay correlates during the performance of an auditory working memory task.
    Sakurai Y
    Behav Neurosci; 1990 Dec; 104(6):856-68. PubMed ID: 2285484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.