These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18156170)

  • 1. Origin and propagation of individual slow waves along the intact feline small intestine.
    Lammers WJ; Stephen B
    Exp Physiol; 2008 Mar; 93(3):334-46. PubMed ID: 18156170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peripheral pacemakers and patterns of slow wave propagation in the canine small intestine in vivo.
    Lammers WJ; Ver Donck L; Schuurkes JA; Stephen B
    Can J Physiol Pharmacol; 2005 Nov; 83(11):1031-43. PubMed ID: 16391712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and temporal coupling between slow waves and pendular contractions.
    Lammers WJ
    Am J Physiol Gastrointest Liver Physiol; 2005 Nov; 289(5):G898-903. PubMed ID: 16020658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similarities and differences in the propagation of slow waves and peristaltic waves.
    Lammers WJ; Stephen B; Slack JR
    Am J Physiol Gastrointest Liver Physiol; 2002 Sep; 283(3):G778-86. PubMed ID: 12181194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.
    Lammers WJ; Ver Donck L; Stephen B; Smets D; Schuurkes JA
    Am J Physiol Gastrointest Liver Physiol; 2009 Jun; 296(6):G1200-10. PubMed ID: 19359425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Migrating motor complexes do not require electrical slow waves in the mouse small intestine.
    Spencer NJ; Sanders KM; Smith TK
    J Physiol; 2003 Dec; 553(Pt 3):881-93. PubMed ID: 14514874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal and circumferential spike patches in the canine small intestine in vivo.
    Lammers WJ; Donck LV; Schuurkes JA; Stephen B
    Am J Physiol Gastrointest Liver Physiol; 2003 Nov; 285(5):G1014-27. PubMed ID: 12842824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow wave propagation and plasticity of interstitial cells of Cajal in the small intestine of diabetic rats.
    Lammers WJ; Al-Bloushi HM; Al-Eisaei SA; Al-Dhaheri FA; Stephen B; John R; Dhanasekaran S; Karam SM
    Exp Physiol; 2011 Oct; 96(10):1039-48. PubMed ID: 21742753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine.
    Gwynne RM; Bornstein JC
    Am J Physiol Gastrointest Liver Physiol; 2007 Apr; 292(4):G1162-72. PubMed ID: 17218474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normal and abnormal electrical propagation in the small intestine.
    Lammers WJ
    Acta Physiol (Oxf); 2015 Feb; 213(2):349-59. PubMed ID: 25156937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic propagation in the small intestine.
    Lammers WJ; Stephen B; Slack JR; Dhanasekaran S
    Neurogastroenterol Motil; 2002 Aug; 14(4):357-64. PubMed ID: 12213103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does the cholinergic system modulate gastrointestinal slow waves during less active phases of migrating myoelectric complex in healthy rams?
    RomaƄski KW
    Folia Med Cracov; 2003; 44(1-2):79-91. PubMed ID: 15232890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subtractive hybridization unravels a role for the ion cotransporter NKCC1 in the murine intestinal pacemaker.
    Wouters M; De Laet A; Donck LV; Delpire E; van Bogaert PP; Timmermans JP; de Kerchove d'Exaerde A; Smans K; Vanderwinden JM
    Am J Physiol Gastrointest Liver Physiol; 2006 Jun; 290(6):G1219-27. PubMed ID: 16123204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor patterns of the small intestine explained by phase-amplitude coupling of two pacemaker activities: the critical importance of propagation velocity.
    Huizinga JD; Parsons SP; Chen JH; Pawelka A; Pistilli M; Li C; Yu Y; Ye P; Liu Q; Tong M; Zhu YF; Wei D
    Am J Physiol Cell Physiol; 2015 Sep; 309(6):C403-14. PubMed ID: 26135802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enteric mechanisms of initiation of migrating myoelectric complexes in dogs.
    Sarna S; Condon RE; Cowles V
    Gastroenterology; 1983 Apr; 84(4):814-22. PubMed ID: 6825992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of gap junction inhibition on contraction waves in the murine small intestine in relation to coupled oscillator theory.
    Parsons SP; Huizinga JD
    Am J Physiol Gastrointest Liver Physiol; 2015 Feb; 308(4):G287-97. PubMed ID: 25501550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling and propagation of normal and dysrhythmic gastric slow waves during acute hyperglycaemia in healthy humans.
    Coleski R; Hasler WL
    Neurogastroenterol Motil; 2009 May; 21(5):492-9, e1-2. PubMed ID: 19309443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Coordination of the myoelectrical activity of the large and small intestine].
    Lychkova AE
    Eksp Klin Gastroenterol; 2012; (3):59-61. PubMed ID: 22830225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine.
    Angeli TR; O'Grady G; Du P; Paskaranandavadivel N; Pullan AJ; Bissett IP; Cheng LK
    Neurogastroenterol Motil; 2013 May; 25(5):e304-14. PubMed ID: 23489929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic slow-wave interactions in the rabbit small intestine defined using high-resolution mapping.
    Cherian Abraham A; Cheng LK; Angeli TR; Alighaleh S; Paskaranandavadivel N
    Neurogastroenterol Motil; 2019 Sep; 31(9):e13670. PubMed ID: 31250520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.