BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18156201)

  • 1. Microtopography and flow modulate the direction of endothelial cell migration.
    Uttayarat P; Chen M; Li M; Allen FD; Composto RJ; Lelkes PI
    Am J Physiol Heart Circ Physiol; 2008 Feb; 294(2):H1027-35. PubMed ID: 18156201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of basal topographic cues and apical shear stress in vascular endothelial cells.
    Morgan JT; Wood JA; Shah NM; Hughbanks ML; Russell P; Barakat AI; Murphy CJ
    Biomaterials; 2012 Jun; 33(16):4126-35. PubMed ID: 22417618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The control of endothelial cell adhesion and migration by shear stress and matrix-substrate anchorage.
    Teichmann J; Morgenstern A; Seebach J; Schnittler HJ; Werner C; Pompe T
    Biomaterials; 2012 Mar; 33(7):1959-69. PubMed ID: 22154622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The regulation of trophoblast migration across endothelial cells by low shear stress: consequences for vascular remodelling in pregnancy.
    James JL; Cartwright JE; Whitley GS; Greenhill DR; Hoppe A
    Cardiovasc Res; 2012 Jan; 93(1):152-61. PubMed ID: 22012954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the dynamics of shear stress-induced structural changes in endothelial cells.
    Mott RE; Helmke BP
    Am J Physiol Cell Physiol; 2007 Nov; 293(5):C1616-26. PubMed ID: 17855768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the microstructure of cultured porcine aortic endothelial cells in the early stage after applying a fluid-imposed shear stress.
    Ookawa K; Sato M; Ohshima N
    J Biomech; 1992 Nov; 25(11):1321-8. PubMed ID: 1400533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelial actin cytoskeleton remodeling during mechanostimulation with fluid shear stress.
    Osborn EA; Rabodzey A; Dewey CF; Hartwig JH
    Am J Physiol Cell Physiol; 2006 Feb; 290(2):C444-52. PubMed ID: 16176968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in organization and composition of the extracellular matrix underlying cultured endothelial cells exposed to laminar steady shear stress.
    Thoumine O; Nerem RM; Girard PR
    Lab Invest; 1995 Oct; 73(4):565-76. PubMed ID: 7474929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces.
    Hsu S; Thakar R; Liepmann D; Li S
    Biochem Biophys Res Commun; 2005 Nov; 337(1):401-9. PubMed ID: 16188239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo modulation of endothelial F-actin microfilaments by experimental alterations in shear stress.
    Kim DW; Gotlieb AI; Langille BL
    Arteriosclerosis; 1989; 9(4):439-45. PubMed ID: 2751473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biorheological views of endothelial cell responses to mechanical stimuli.
    Sato M; Ohashi T
    Biorheology; 2005; 42(6):421-41. PubMed ID: 16369082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels.
    Gojova A; Barakat AI
    J Appl Physiol (1985); 2005 Jun; 98(6):2355-62. PubMed ID: 15705727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microelastic mapping of living endothelial cells exposed to shear stress in relation to three-dimensional distribution of actin filaments.
    Sato M; Suzuki K; Ueki Y; Ohashi T
    Acta Biomater; 2007 May; 3(3):311-9. PubMed ID: 17055790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow-induced focal adhesion remodeling mediated by local cytoskeletal stresses and reorganization.
    Verma D; Meng F; Sachs F; Hua SZ
    Cell Adh Migr; 2015; 9(6):432-40. PubMed ID: 26418333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady unidirectional laminar flow inhibits monolayer formation by human and rat microvascular endothelial cells.
    Rezvan A; Allen FD; Lelkes PI
    Endothelium; 2004; 11(1):11-6. PubMed ID: 15203875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Spatial Constraints of Rectangular Hydrogel Microgrooves Regulate the Morphology and Arrangement of Human Umbilical Vein Endothelial Cells].
    Jiang W; Zhong J; Ouyang Z; Shen J; Qiu Y; Zeng Y
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 55(1):87-94. PubMed ID: 38322512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional change produced by perpendicularly-oriented microgrooves is microtubule-dependent for fibroblasts and epithelium.
    Hamilton DW; Oakley C; Jaeger NA; Brunette DM
    Cell Motil Cytoskeleton; 2009 May; 66(5):260-71. PubMed ID: 19343790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces.
    Vartanian KB; Kirkpatrick SJ; Hanson SR; Hinds MT
    Biochem Biophys Res Commun; 2008 Jul; 371(4):787-92. PubMed ID: 18471992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of cultured endothelial cells to mechanical stimulation.
    Dartsch PC; Betz E
    Basic Res Cardiol; 1989; 84(3):268-81. PubMed ID: 2764859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micropatterned structural control suppresses mechanotaxis of endothelial cells.
    Lin X; Helmke BP
    Biophys J; 2008 Sep; 95(6):3066-78. PubMed ID: 18586851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.