These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 18156321)

  • 1. Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces.
    Espírito Santo C; Taudte N; Nies DH; Grass G
    Appl Environ Microbiol; 2008 Feb; 74(4):977-86. PubMed ID: 18156321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria.
    Elguindi J; Moffitt S; Hasman H; Andrade C; Raghavan S; Rensing C
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1963-70. PubMed ID: 21085951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survival of bacteria on metallic copper surfaces in a hospital trial.
    Mikolay A; Huggett S; Tikana L; Grass G; Braun J; Nies DH
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1875-9. PubMed ID: 20449737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria.
    Warnes SL; Caves V; Keevil CW
    Environ Microbiol; 2012 Jul; 14(7):1730-43. PubMed ID: 22176893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces.
    Nandakumar R; Espirito Santo C; Madayiputhiya N; Grass G
    Biometals; 2011 Jun; 24(3):429-44. PubMed ID: 21384090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of reactive oxygen species in Escherichia coli inactivation by cupric ion.
    Park HJ; Nguyen TT; Yoon J; Lee C
    Environ Sci Technol; 2012 Oct; 46(20):11299-304. PubMed ID: 22998466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial killing by dry metallic copper surfaces.
    Espírito Santo C; Lam EW; Elowsky CG; Quaranta D; Domaille DW; Chang CJ; Grass G
    Appl Environ Microbiol; 2011 Feb; 77(3):794-802. PubMed ID: 21148701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The role of reactive oxygen species in copper-induced permeability of plasma membranes in Escherichia coli].
    Lebedev VS; Veselovskiĭ AV; Deĭnega EIu; Fedorov IuI
    Biofizika; 2002; 47(2):295-9. PubMed ID: 11969166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.
    Hahn C; Hans M; Hein C; Mancinelli RL; Mücklich F; Wirth R; Rettberg P; Hellweg CE; Moeller R
    Astrobiology; 2017 Dec; 17(12):1183-1191. PubMed ID: 29116818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutant Strains of Escherichia coli and Methicillin-Resistant Staphylococcus aureus Obtained by Laboratory Selection To Survive on Metallic Copper Surfaces.
    Bleichert P; Bütof L; Rückert C; Herzberg M; Francisco R; Morais PV; Grass G; Kalinowski J; Nies DH
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33067196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of biocidal efficacy of copper alloy coatings in comparison with solid metal surfaces: generation of organic copper phosphate nanoflowers.
    Gutierrez H; Portman T; Pershin V; Ringuette M
    J Appl Microbiol; 2013 Mar; 114(3):680-7. PubMed ID: 23228103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Killing by bactericidal antibiotics does not depend on reactive oxygen species.
    Keren I; Wu Y; Inocencio J; Mulcahy LR; Lewis K
    Science; 2013 Mar; 339(6124):1213-6. PubMed ID: 23471410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper Reduction and Contact Killing of Bacteria by Iron Surfaces.
    Mathews S; Kumar R; Solioz M
    Appl Environ Microbiol; 2015 Sep; 81(18):6399-403. PubMed ID: 26150470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The survival of Escherichia coli O157 on a range of metal surfaces.
    Wilks SA; Michels H; Keevil CW
    Int J Food Microbiol; 2005 Dec; 105(3):445-54. PubMed ID: 16253366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival of Escherichia coli cells on solid copper surfaces is increased by glutathione.
    Große C; Schleuder G; Schmole C; Nies DH
    Appl Environ Microbiol; 2014 Nov; 80(22):7071-8. PubMed ID: 25192999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli.
    Rispoli F; Angelov A; Badia D; Kumar A; Seal S; Shah V
    J Hazard Mater; 2010 Aug; 180(1-3):212-6. PubMed ID: 20434839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface structure influences contact killing of bacteria by copper.
    Zeiger M; Solioz M; Edongué H; Arzt E; Schneider AS
    Microbiologyopen; 2014 Jun; 3(3):327-32. PubMed ID: 24740976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces.
    Quaranta D; Krans T; Espírito Santo C; Elowsky CG; Domaille DW; Chang CJ; Grass G
    Appl Environ Microbiol; 2011 Jan; 77(2):416-26. PubMed ID: 21097600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation and injury of Escherichia coli in a copper water storage vessel: effects of temperature and pH.
    Sharan R; Chhibber S; Attri S; Reed RH
    Antonie Van Leeuwenhoek; 2010 Jan; 97(1):91-7. PubMed ID: 19924559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advantages and challenges of increased antimicrobial copper use and copper mining.
    Elguindi J; Hao X; Lin Y; Alwathnani HA; Wei G; Rensing C
    Appl Microbiol Biotechnol; 2011 Jul; 91(2):237-49. PubMed ID: 21656137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.