These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 18156329)
1. Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction. Pinchuk GE; Ammons C; Culley DE; Li SM; McLean JS; Romine MF; Nealson KH; Fredrickson JK; Beliaev AS Appl Environ Microbiol; 2008 Feb; 74(4):1198-208. PubMed ID: 18156329 [TBL] [Abstract][Full Text] [Related]
2. Roles of two Shewanella oneidensis MR-1 extracellular endonucleases. Gödeke J; Heun M; Bubendorfer S; Paul K; Thormann KM Appl Environ Microbiol; 2011 Aug; 77(15):5342-51. PubMed ID: 21705528 [TBL] [Abstract][Full Text] [Related]
3. Functional specificity of extracellular nucleases of Shewanella oneidensis MR-1. Heun M; Binnenkade L; Kreienbaum M; Thormann KM Appl Environ Microbiol; 2012 Jun; 78(12):4400-11. PubMed ID: 22492434 [TBL] [Abstract][Full Text] [Related]
4. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Liu C; Gorby YA; Zachara JM; Fredrickson JK; Brown CF Biotechnol Bioeng; 2002 Dec; 80(6):637-49. PubMed ID: 12378605 [TBL] [Abstract][Full Text] [Related]
5. c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. Marshall MJ; Beliaev AS; Dohnalkova AC; Kennedy DW; Shi L; Wang Z; Boyanov MI; Lai B; Kemner KM; McLean JS; Reed SB; Culley DE; Bailey VL; Simonson CJ; Saffarini DA; Romine MF; Zachara JM; Fredrickson JK PLoS Biol; 2006 Sep; 4(9):e268. PubMed ID: 16875436 [TBL] [Abstract][Full Text] [Related]
6. High frequency of glucose-utilizing mutants in Shewanella oneidensis MR-1. Howard EC; Hamdan LJ; Lizewski SE; Ringeisen BR FEMS Microbiol Lett; 2012 Feb; 327(1):9-14. PubMed ID: 22092702 [TBL] [Abstract][Full Text] [Related]
7. The utility of Shewanella japonica for microbial fuel cells. Biffinger JC; Fitzgerald LA; Ray R; Little BJ; Lizewski SE; Petersen ER; Ringeisen BR; Sanders WC; Sheehan PE; Pietron JJ; Baldwin JW; Nadeau LJ; Johnson GR; Ribbens M; Finkel SE; Nealson KH Bioresour Technol; 2011 Jan; 102(1):290-7. PubMed ID: 20663660 [TBL] [Abstract][Full Text] [Related]
8. Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions. Choi D; Lee SB; Kim S; Min B; Choi IG; Chang IS Bioresour Technol; 2014 Feb; 154():59-66. PubMed ID: 24384311 [TBL] [Abstract][Full Text] [Related]
10. H₂-dependent azoreduction by Shewanella oneidensis MR-1: involvement of secreted flavins and both [Ni-Fe] and [Fe-Fe] hydrogenases. Le Laz S; Kpebe A; Lorquin J; Brugna M; Rousset M Appl Microbiol Biotechnol; 2014 Mar; 98(6):2699-707. PubMed ID: 24081321 [TBL] [Abstract][Full Text] [Related]
11. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Pinchuk GE; Rodionov DA; Yang C; Li X; Osterman AL; Dervyn E; Geydebrekht OV; Reed SB; Romine MF; Collart FR; Scott JH; Fredrickson JK; Beliaev AS Proc Natl Acad Sci U S A; 2009 Feb; 106(8):2874-9. PubMed ID: 19196979 [TBL] [Abstract][Full Text] [Related]
12. Large-scale comparative phenotypic and genomic analyses reveal ecological preferences of shewanella species and identify metabolic pathways conserved at the genus level. Rodrigues JL; Serres MH; Tiedje JM Appl Environ Microbiol; 2011 Aug; 77(15):5352-60. PubMed ID: 21642407 [TBL] [Abstract][Full Text] [Related]
13. Roles of siderophore in manganese-oxide reduction by Shewanella oneidensis MR-1. Kouzuma A; Hashimoto K; Watanabe K FEMS Microbiol Lett; 2012 Jan; 326(1):91-8. PubMed ID: 22092340 [TBL] [Abstract][Full Text] [Related]
14. Activation of an Otherwise Silent Xylose Metabolic Pathway in Shewanella oneidensis. Sekar R; Shin HD; DiChristina TJ Appl Environ Microbiol; 2016 Jul; 82(13):3996-4005. PubMed ID: 27107127 [TBL] [Abstract][Full Text] [Related]
15. Production of Manganese Oxide Nanoparticles by Shewanella Species. Wright MH; Farooqui SM; White AR; Greene AC Appl Environ Microbiol; 2016 Sep; 82(17):5402-9. PubMed ID: 27342559 [TBL] [Abstract][Full Text] [Related]
16. Towards environmental systems biology of Shewanella. Fredrickson JK; Romine MF; Beliaev AS; Auchtung JM; Driscoll ME; Gardner TS; Nealson KH; Osterman AL; Pinchuk G; Reed JL; Rodionov DA; Rodrigues JL; Saffarini DA; Serres MH; Spormann AM; Zhulin IB; Tiedje JM Nat Rev Microbiol; 2008 Aug; 6(8):592-603. PubMed ID: 18604222 [TBL] [Abstract][Full Text] [Related]
17. The role of 4-hydroxyphenylpyruvate dioxygenase in enhancement of solid-phase electron transfer by Shewanella oneidensis MR-1. Turick CE; Beliaev AS; Zakrajsek BA; Reardon CL; Lowy DA; Poppy TE; Maloney A; Ekechukwu AA FEMS Microbiol Ecol; 2009 May; 68(2):223-5. PubMed ID: 19573203 [TBL] [Abstract][Full Text] [Related]
18. Promoted reduction of tellurite and formation of extracellular tellurium nanorods by concerted reaction between iron and Shewanella oneidensis MR-1. Kim DH; Kim MG; Jiang S; Lee JH; Hur HG Environ Sci Technol; 2013 Aug; 47(15):8709-15. PubMed ID: 23802169 [TBL] [Abstract][Full Text] [Related]
19. Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Cai PJ; Xiao X; He YR; Li WW; Chu J; Wu C; He MX; Zhang Z; Sheng GP; Lam MH; Xu F; Yu HQ Appl Microbiol Biotechnol; 2012 Feb; 93(4):1769-76. PubMed ID: 21808969 [TBL] [Abstract][Full Text] [Related]
20. Comparisons of Shewanella strains based on genome annotations, modeling, and experiments. Ong WK; Vu TT; Lovendahl KN; Llull JM; Serres MH; Romine MF; Reed JL BMC Syst Biol; 2014 Mar; 8():31. PubMed ID: 24621294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]