BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18156670)

  • 1. Report on a project on three-dimensional imaging of the biological cell by single-particle X-ray diffraction.
    Sayre D
    Acta Crystallogr A; 2008 Jan; 64(Pt 1):33-5. PubMed ID: 18156670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Report on a project on three-dimensional imaging of the biological cell by single-particle X-ray diffraction. Addendum.
    Shapiro DA
    Acta Crystallogr A; 2008 Jan; 64(Pt 1):36-7. PubMed ID: 18156671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of a yeast cell from X-ray diffraction data.
    Thibault P; Elser V; Jacobsen C; Shapiro D; Sayre D
    Acta Crystallogr A; 2006 Jul; 62(Pt 4):248-61. PubMed ID: 16788265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of three-dimensional orientations of ferroelectric single crystals by an improved rotating orientation x-ray diffraction method.
    Li F; Jin L; Xu Z; Guo Z
    Rev Sci Instrum; 2009 Aug; 80(8):085106. PubMed ID: 19725680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Powder diffraction from a continuous microjet of submicrometer protein crystals.
    Shapiro DA; Chapman HN; Deponte D; Doak RB; Fromme P; Hembree G; Hunter M; Marchesini S; Schmidt K; Spence J; Starodub D; Weierstall U
    J Synchrotron Radiat; 2008 Nov; 15(Pt 6):593-9. PubMed ID: 18955765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft X-ray diffraction microscopy of a frozen hydrated yeast cell.
    Huang X; Nelson J; Kirz J; Lima E; Marchesini S; Miao H; Neiman AM; Shapiro D; Steinbrener J; Stewart A; Turner JJ; Jacobsen C
    Phys Rev Lett; 2009 Nov; 103(19):198101. PubMed ID: 20365955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent X-ray diffractive imaging of protein crystals.
    Boutet S; Robinson IK
    J Synchrotron Radiat; 2008 Nov; 15(Pt 6):576-83. PubMed ID: 18955763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPEDEN: reconstructing single particles from their diffraction patterns.
    Hau-Riege SP; Szoke H; Chapman HN; Szoke A; Marchesini S; Noy A; He H; Howells M; Weierstall U; Spence JC
    Acta Crystallogr A; 2004 Jul; 60(Pt 4):294-305. PubMed ID: 15218206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron crystallography: imaging and single-crystal diffraction from powders.
    Zou X; Hovmöller S
    Acta Crystallogr A; 2008 Jan; 64(Pt 1):149-60. PubMed ID: 18156680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tomography of a Cryo-immobilized Yeast Cell Using Ptychographic Coherent X-Ray Diffractive Imaging.
    Giewekemeyer K; Hackenberg C; Aquila A; Wilke RN; Groves MR; Jordanova R; Lamzin VS; Borchers G; Saksl K; Zozulya AV; Sprung M; Mancuso AP
    Biophys J; 2015 Nov; 109(9):1986-95. PubMed ID: 26536275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KOTOBUKI-1 apparatus for cryogenic coherent X-ray diffraction imaging.
    Nakasako M; Takayama Y; Oroguchi T; Sekiguchi Y; Kobayashi A; Shirahama K; Yamamoto M; Hikima T; Yonekura K; Maki-Yonekura S; Kohmura Y; Inubushi Y; Takahashi Y; Suzuki A; Matsunaga S; Inui Y; Tono K; Kameshima T; Joti Y; Hoshi T
    Rev Sci Instrum; 2013 Sep; 84(9):093705. PubMed ID: 24089834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic structure of a single large biomolecule from diffraction patterns of random orientations.
    Tegze M; Bortel G
    J Struct Biol; 2012 Jul; 179(1):41-5. PubMed ID: 22575364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction.
    Bergh M; Huldt G; Tîmneanu N; Maia FR; Hajdu J
    Q Rev Biophys; 2008; 41(3-4):181-204. PubMed ID: 19079804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel multi-detection technique for three-dimensional reciprocal-space mapping in grazing-incidence X-ray diffraction.
    Schmidbauer M; Schäfer P; Besedin S; Grigoriev D; Köhler R; Hanke M
    J Synchrotron Radiat; 2008 Nov; 15(Pt 6):549-57. PubMed ID: 18955760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray microdiffraction and conventional diffraction from frozen-hydrated biological specimens.
    Iwamoto H; Inoue K; Fujisawa T; Yagi N
    J Synchrotron Radiat; 2005 Jul; 12(Pt 4):479-83. PubMed ID: 15968125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CMOS active pixel sensor system for laboratory- based x-ray diffraction studies of biological tissue.
    Bohndiek SE; Cook EJ; Arvanitis CD; Olivo A; Royle GJ; Clark AT; Prydderch ML; Turchetta R; Speller RD
    Phys Med Biol; 2008 Feb; 53(3):655-72. PubMed ID: 18199908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens.
    Nam D; Park J; Gallagher-Jones M; Shimada H; Kim S; Kim S; Kohmura Y; Ishikawa T; Song C
    Rev Sci Instrum; 2013 Nov; 84(11):113702. PubMed ID: 24289399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray diffraction imaging--a multi-generational perspective.
    Harding G
    Appl Radiat Isot; 2009 Feb; 67(2):287-95. PubMed ID: 18805014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.
    Daniels JE; Drakopoulos M
    J Synchrotron Radiat; 2009 Jul; 16(Pt 4):463-8. PubMed ID: 19535858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confocal full-field X-ray microscope for novel three-dimensional X-ray imaging.
    Takeuchi A; Terada Y; Suzuki Y; Uesugi K; Aoki S
    J Synchrotron Radiat; 2009 Sep; 16(Pt 5):616-21. PubMed ID: 19713634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.