These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1815774)

  • 21. Effect of prosthetic aortic valve design on the Doppler-catheter gradient correlation: an in vitro study of normal St. Jude, Medtronic-Hall, Starr-Edwards and Hancock valves.
    Baumgartner H; Khan S; DeRobertis M; Czer L; Maurer G
    J Am Coll Cardiol; 1992 Feb; 19(2):324-32. PubMed ID: 1531058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of mechanical stress in calcification of aortic bioprosthetic valves.
    Thubrikar MJ; Deck JD; Aouad J; Nolan SP
    J Thorac Cardiovasc Surg; 1983 Jul; 86(1):115-25. PubMed ID: 6865456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Harvested porcine mitral xenograft fixation: impact on fluid dynamic performance.
    Jensen MO; Lemmon JD; Gessaghi VC; Conrad CP; Levine RA; Yoganathan AP
    J Heart Valve Dis; 2001 Jan; 10(1):111-24. PubMed ID: 11206757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Effective Orifice Areas of Mitral Prosthetic Heart Valves: An In-Vitro Study.
    Evin M; Magne J; Grieve SM; Rieu R; Pibarot P
    J Heart Valve Dis; 2017 Nov; 26(6):677-687. PubMed ID: 30207118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A synthetic leaflet heart valve with improved opening characteristics.
    Leat ME; Fisher J
    Med Eng Phys; 1994 Nov; 16(6):470-6. PubMed ID: 7858778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A synthetic three-leaflet valve.
    Jansen J; Reul H
    J Med Eng Technol; 1992; 16(1):27-33. PubMed ID: 1640445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of ventricular input impedance on the hydrodynamic performance of bioprosthetic aortic roots in vitro.
    Jennings LM; Butterfield M; Walker PG; Watterson KG; Fisher J
    J Heart Valve Dis; 2001 Mar; 10(2):269-75. PubMed ID: 11297215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrodynamic comparison of biological prostheses during progressive valve calcification in a simulated exercise situation. An in vitro study.
    Bakhtiary F; Dzemali O; Steinseiffer U; Schmitz C; Glasmacher B; Moritz A; Kleine P
    Eur J Cardiothorac Surg; 2008 Nov; 34(5):960-3. PubMed ID: 18774723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro hydrodynamic characteristics among three bileaflet valves in the mitral position.
    Feng Z; Umezu M; Fujimoto T; Tsukahara T; Nurishi M; Kawaguchi D
    Artif Organs; 2000 May; 24(5):346-54. PubMed ID: 10848675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leaflet opening and closing dynamics of stentless bioprostheses.
    Frost MW; Funderl JA; Klaaborg KE; Wierup P; Sloth E; Nygaard H; Hasenkam JM
    J Heart Valve Dis; 2010 Jul; 19(4):492-8. PubMed ID: 20845898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Echocardiographic and pathologic features of explanted Hancock and Carpentier-Edwards bioprosthetic valves in the mitral position.
    Naqvi TZ; Siegel RJ; Buchbinder NA; Miroshnik S; Saedi G; Trento A; Fishbein MC
    Am J Cardiol; 1999 Dec; 84(12):1422-7. PubMed ID: 10606116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer.
    Rahmani B; Tzamtzis S; Ghanbari H; Burriesci G; Seifalian AM
    J Biomech; 2012 Apr; 45(7):1205-11. PubMed ID: 22336198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Valve-in-valve outcome: design impact of a pre-existing bioprosthesis on the hydrodynamics of an Edwards Sapien XT valve.
    Doose C; Kütting M; Egron S; Farhadi Ghalati P; Schmitz C; Utzenrath M; Sedaghat A; Fujita B; Schmitz-Rode T; Ensminger S; Steinseifer U
    Eur J Cardiothorac Surg; 2017 Mar; 51(3):562-570. PubMed ID: 27773869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flow characteristics of bioprosthetic heart valves.
    Rashtian MY; Stevenson DM; Allen DT; Yoganathan AP; Harrison EC; Edmiston WA; Rahimtoola SH
    Chest; 1990 Aug; 98(2):365-75. PubMed ID: 2376169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation technique for bileaflet mechanical valves.
    Shipkowitz T; Ambrus J; Kurk J; Wickramasinghe K
    J Heart Valve Dis; 2002 Mar; 11(2):275-82. PubMed ID: 12000172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of sizing on the hydrodynamic parameters of the Medtronic freestyle valve in vitro.
    Nagy ZL; Fisher J; Walker PG; Watterson KG
    Ann Thorac Surg; 2000 May; 69(5):1408-13. PubMed ID: 10881814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polyurethane: material for the next generation of heart valve prostheses?
    Wheatley DJ; Raco L; Bernacca GM; Sim I; Belcher PR; Boyd JS
    Eur J Cardiothorac Surg; 2000 Apr; 17(4):440-8. PubMed ID: 10773568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Steady and pulsatile flow studies on a trileaflet heart valve prosthesis.
    Woo YR; Williams FP; Yoganathan AP
    Scand J Thorac Cardiovasc Surg; 1983; 17(3):227-36. PubMed ID: 6648398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An in vitro comparison of internally versus externally mounted leaflets in surgical aortic bioprostheses.
    Vriesendorp MD; de Lind van Wijngaarden RAF; Rao V; Moront MG; Patel HJ; Sarnowski E; Vatanpour S; Klautz RJM
    Interact Cardiovasc Thorac Surg; 2020 Mar; 30(3):417-423. PubMed ID: 31778161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bileaflet, tilting disc and porcine aortic valve substitutes: in vivo hydrodynamic characteristics.
    Gray RJ; Chaux A; Matloff JM; DeRobertis M; Raymond M; Stewart M; Yoganathan A
    J Am Coll Cardiol; 1984 Feb; 3(2 Pt 1):321-7. PubMed ID: 6693620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.