BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18157936)

  • 41. Heme oxygenase-1: a novel key player in the development of tolerance in response to organic nitrates.
    Wenzel P; Oelze M; Coldewey M; Hortmann M; Seeling A; Hink U; Mollnau H; Stalleicken D; Weiner H; Lehmann J; Li H; Förstermann U; Münzel T; Daiber A
    Arterioscler Thromb Vasc Biol; 2007 Aug; 27(8):1729-35. PubMed ID: 17541025
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Oxidative stress in nitroglycerin tolerance and treatment with 3,4,5,6-tetrahydroxyxanthone].
    Shi RZ; Zhang GG; Bai YP; Li YJ; Hu GY; Chen J
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2006 Oct; 31(5):650-4. PubMed ID: 17062923
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacopa monnieri modulates endogenous cytoplasmic and mitochondrial oxidative markers in prepubertal mice brain.
    Shinomol GK; Muralidhara
    Phytomedicine; 2011 Feb; 18(4):317-26. PubMed ID: 20850955
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A role for glutathione, independent of oxidative stress, in the developmental toxicity of methanol.
    Siu MT; Shapiro AM; Wiley MJ; Wells PG
    Toxicol Appl Pharmacol; 2013 Dec; 273(3):508-15. PubMed ID: 24095963
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acrolein and chloroacetaldehyde: an examination of the cell and cell-free biomarkers of toxicity.
    MacAllister SL; Martin-Brisac N; Lau V; Yang K; O'Brien PJ
    Chem Biol Interact; 2013 Feb; 202(1-3):259-66. PubMed ID: 23220588
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Retinoic acid down-regulates aldehyde dehydrogenase and increases cytotoxicity of 4-hydroperoxycyclophosphamide and acetaldehyde.
    Moreb JS; Gabr A; Vartikar GR; Gowda S; Zucali JR; Mohuczy D
    J Pharmacol Exp Ther; 2005 Jan; 312(1):339-45. PubMed ID: 15470086
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cyanamide phytotoxicity in soybean (Glycine max) seedlings involves aldehyde dehydrogenase inhibition and oxidative stress.
    Maninang JS; Okazaki S; Fujii Y
    Nat Prod Commun; 2015 May; 10(5):743-6. PubMed ID: 26058148
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glutathione and mitochondria determine acute defense responses and adaptive processes in cadmium-induced oxidative stress and toxicity of the kidney.
    Nair AR; Lee WK; Smeets K; Swennen Q; Sanchez A; Thévenod F; Cuypers A
    Arch Toxicol; 2015 Dec; 89(12):2273-89. PubMed ID: 25388156
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of mitochondrial aldehyde dehydrogenase in nitrate tolerance.
    DiFabio J; Ji Y; Vasiliou V; Thatcher GR; Bennett BM
    Mol Pharmacol; 2003 Nov; 64(5):1109-16. PubMed ID: 14573760
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cytotoxicity and metabolic stress induced by acetaldehyde in human intestinal LS174T goblet-like cells.
    Elamin E; Masclee A; Troost F; Dekker J; Jonkers D
    Am J Physiol Gastrointest Liver Physiol; 2014 Aug; 307(3):G286-94. PubMed ID: 24904079
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants.
    Cui K; Luo X; Xu K; Ven Murthy MR
    Prog Neuropsychopharmacol Biol Psychiatry; 2004 Aug; 28(5):771-99. PubMed ID: 15363603
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biotransformation and nitroglycerin-induced effects on antioxidative defense system in rat erythrocytes and reticulocytes.
    Marković SD; Dorđević NZ; Curčić MG; Stajn AS; Spasić MB
    Gen Physiol Biophys; 2014; 33(4):393-401. PubMed ID: 25146184
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolism of the glutathione-acrolein adduct, S-(2-aldehydo-ethyl)glutathione, by rat liver alcohol and aldehyde dehydrogenase.
    Mitchell DY; Petersen DR
    J Pharmacol Exp Ther; 1989 Oct; 251(1):193-8. PubMed ID: 2795457
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Reactive nitrogen and oxygen species metabolism in rat heart mitochondria upon administration of NO donor in vivo].
    Akopova OV; Korkach IuP; Kotsiuruba AV; Kolchyns'ka LI; Sagach VF
    Fiziol Zh (1994); 2012; 58(2):3-15. PubMed ID: 22873047
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Small-molecule targeting of the mitochondrial compartment with an endogenously cleaved reversible tag.
    Ripcke J; Zarse K; Ristow M; Birringer M
    Chembiochem; 2009 Jul; 10(10):1689-96. PubMed ID: 19492396
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mitochondrial reactive oxygen species production by fish muscle mitochondria: Potential role in acute heat-induced oxidative stress.
    Banh S; Wiens L; Sotiri E; Treberg JR
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Jan; 191():99-107. PubMed ID: 26456509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Human aldehyde dehydrogenase isozymes and alcohol sensitivity.
    Agarwal DP; Goedde HW
    Isozymes Curr Top Biol Med Res; 1987; 16():21-48. PubMed ID: 3610592
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mitochondrial isocitrate dehydrogenase protects human neuroblastoma SH-SY5Y cells against oxidative stress.
    Kim SJ; Yune TY; Han CT; Kim YC; Oh YJ; Markelonis GJ; Oh TH
    J Neurosci Res; 2007 Jan; 85(1):139-52. PubMed ID: 17075901
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Failure of glutathione and cysteine prodrugs to block the chlorpropamide-induced inhibition of aldehyde dehydrogenase in vivo.
    Shirota FN; Elberling JA; Nagasawa HT; DeMaster EG
    Biochem Pharmacol; 1992 Feb; 43(4):916-8. PubMed ID: 1540248
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mitochondrial aldehyde dehydrogenase-2 deficiency compromises therapeutic effect of ALDH bright cell on peripheral ischemia.
    Sun X; Zhu H; Dong Z; Liu X; Ma X; Han S; Lu F; Wang P; Qian S; Wang C; Shen C; Zhao X; Zou Y; Ge J; Sun A
    Redox Biol; 2017 Oct; 13():196-206. PubMed ID: 28582728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.