These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 1815821)
1. Stimulation of the periaqueductal gray matter of the rat produces a preferential ipsilateral antinociception. Levine R; Morgan MM; Cannon JT; Liebeskind JC Brain Res; 1991 Dec; 567(1):140-4. PubMed ID: 1815821 [TBL] [Abstract][Full Text] [Related]
2. Stimulation-produced analgesia in the mouse: evidence for laterality of opioid mediation. Marek P; Yirmiya R; Liebeskind JC Brain Res; 1991 Feb; 541(1):154-6. PubMed ID: 2029617 [TBL] [Abstract][Full Text] [Related]
3. Periaqueductal gray stimulation produces a spinally mediated, opioid antinociception for the inflamed hindpaw of the rat. Morgan MM; Gold MS; Liebeskind JC; Stein C Brain Res; 1991 Apr; 545(1-2):17-23. PubMed ID: 1860042 [TBL] [Abstract][Full Text] [Related]
4. Stimulation of the periaqueductal gray matter inhibits nociception at the supraspinal as well as spinal level. Morgan MM; Sohn JH; Liebeskind JC Brain Res; 1989 Nov; 502(1):61-6. PubMed ID: 2819459 [TBL] [Abstract][Full Text] [Related]
5. Midbrain suppression of limb withdrawal and tail flick reflexes in the rat: correlates with descending inhibition of sacral spinal neurons. Carstens E; Douglass DK J Neurophysiol; 1995 Jun; 73(6):2179-94. PubMed ID: 7666131 [TBL] [Abstract][Full Text] [Related]
6. An analysis of the 'tolerance' which develops to analgetic electrical stimulation of the midbrain periaqueductal grey in freely moving rats. Millan MJ; Członkowski A; Herz A Brain Res; 1987 Dec; 435(1-2):97-111. PubMed ID: 3427472 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of the responses of neurons in the rat spinal cord to noxious skin heating by stimulation in midbrain periaqueductal gray or lateral reticular formation. Carstens E; Watkins LR Brain Res; 1986 Sep; 382(2):266-77. PubMed ID: 3756519 [TBL] [Abstract][Full Text] [Related]
8. Intense peripheral electrical stimulation differentially inhibits tail vs. limb withdrawal reflexes in the rat. Romita VV; Henry JL Brain Res; 1996 May; 720(1-2):45-53. PubMed ID: 8782895 [TBL] [Abstract][Full Text] [Related]
9. Chronic spinal nerve ligation induces changes in response characteristics of nociceptive spinal dorsal horn neurons and in their descending regulation originating in the periaqueductal gray in the rat. Pertovaara A; Kontinen VK; Kalso EA Exp Neurol; 1997 Oct; 147(2):428-36. PubMed ID: 9344567 [TBL] [Abstract][Full Text] [Related]
10. Site specificity in the development of tolerance to stimulation-produced analgesia from the periaqueductal gray matter of the rat. Morgan MM; Liebeskind JC Brain Res; 1987 Nov; 425(2):356-9. PubMed ID: 3427436 [TBL] [Abstract][Full Text] [Related]
11. Quantitative comparison of inhibition of visceral and cutaneous spinal nociceptive transmission from the midbrain and medulla in the rat. Ness TJ; Gebhart GF J Neurophysiol; 1987 Oct; 58(4):850-65. PubMed ID: 2824712 [TBL] [Abstract][Full Text] [Related]
13. Parametric and pharmacological studies of midbrain suppression of the hind limb flexion withdrawal reflex in the rat. Carstens E; Campbell IG Pain; 1988 May; 33(2):201-213. PubMed ID: 3380560 [TBL] [Abstract][Full Text] [Related]
14. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. I. The production of behavioral side effects together with analgesia. Fardin V; Oliveras JL; Besson JM Brain Res; 1984 Jul; 306(1-2):105-23. PubMed ID: 6540613 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory effects of electrically evoked activation of ventrolateral orbital cortex on the tail-flick reflex are mediated by periaqueductal gray in rats. Zhang YQ; Tang JS; Yuan B; Jia H Pain; 1997 Aug; 72(1-2):127-35. PubMed ID: 9272796 [TBL] [Abstract][Full Text] [Related]
16. Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat. Sandkühler J; Fu QG; Zimmermann M J Neurophysiol; 1987 Aug; 58(2):327-41. PubMed ID: 3655871 [TBL] [Abstract][Full Text] [Related]
17. Relationship between analgesia and cardiovascular changes induced by electrical stimulation of the mesencephalic periaqueductal gray matter in the rat. Depaulis A; Pechnick RN; Liebeskind JC Brain Res; 1988 Jun; 451(1-2):326-32. PubMed ID: 3251592 [TBL] [Abstract][Full Text] [Related]
18. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat. Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336 [TBL] [Abstract][Full Text] [Related]
19. Involvement of nitric oxide and serotonin in modulation of antinociception and pressor responses evoked by stimulation in the dorsolateral region of the periaqueductal gray matter in the rat. Hämäläinen MM; Lovick TA Neuroscience; 1997 Oct; 80(3):821-7. PubMed ID: 9276497 [TBL] [Abstract][Full Text] [Related]
20. Depletion of central beta-endorphin blocks midbrain stimulation produced analgesia in the freely-moving rat. Millan MH; Millan MJ; Herz A Neuroscience; 1986 Jul; 18(3):641-9. PubMed ID: 2944030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]