These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18158259)

  • 1. Mycobacterial phenolic glycolipid virulence factor biosynthesis: mechanism and small-molecule inhibition of polyketide chain initiation.
    Ferreras JA; Stirrett KL; Lu X; Ryu JS; Soll CE; Tan DS; Quadri LE
    Chem Biol; 2008 Jan; 15(1):51-61. PubMed ID: 18158259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperation between a coenzyme A-independent stand-alone initiation module and an iterative type I polyketide synthase during synthesis of mycobacterial phenolic glycolipids.
    He W; Soll CE; Chavadi SS; Zhang G; Warren JD; Quadri LE
    J Am Chem Soc; 2009 Nov; 131(46):16744-50. PubMed ID: 19799378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of cell envelope-associated phenolic glycolipids in Mycobacterium marinum.
    Vergnolle O; Chavadi SS; Edupuganti UR; Mohandas P; Chan C; Zeng J; Kopylov M; Angelo NG; Warren JD; Soll CE; Quadri LE
    J Bacteriol; 2015 Mar; 197(6):1040-50. PubMed ID: 25561717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterial phenolic glycolipid synthesis is regulated by cAMP-dependent lysine acylation of FadD22.
    Samanta S; Singh A; Biswas P; Bhatt A; Visweswariah SS
    Microbiology (Reading); 2017 Mar; 163(3):373-382. PubMed ID: 28141495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dissection of the role of two methyltransferases in the biosynthesis of phenolglycolipids and phthiocerol dimycoserosate in the Mycobacterium tuberculosis complex.
    Pérez E; Constant P; Laval F; Lemassu A; Lanéelle MA; Daffé M; Guilhot C
    J Biol Chem; 2004 Oct; 279(41):42584-92. PubMed ID: 15292265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of three glycosyltransferases involved in the biosynthesis of the phenolic glycolipid antigens from the Mycobacterium tuberculosis complex.
    Pérez E; Constant P; Lemassu A; Laval F; Daffé M; Guilhot C
    J Biol Chem; 2004 Oct; 279(41):42574-83. PubMed ID: 15292272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trisaccharides of Phenolic Glycolipids Confer Advantages to Pathogenic Mycobacteria through Manipulation of Host-Cell Pattern-Recognition Receptors.
    Arbués A; Malaga W; Constant P; Guilhot C; Prandi J; Astarie-Dequeker C
    ACS Chem Biol; 2016 Oct; 11(10):2865-2875. PubMed ID: 27548027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in Mycobacterium tuberculosis.
    Siméone R; Léger M; Constant P; Malaga W; Marrakchi H; Daffé M; Guilhot C; Chalut C
    FEBS J; 2010 Jun; 277(12):2715-25. PubMed ID: 20553505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p-Hydroxybenzoic acid synthesis in Mycobacterium tuberculosis.
    Stadthagen G; Korduláková J; Griffin R; Constant P; Bottová I; Barilone N; Gicquel B; Daffé M; Jackson M
    J Biol Chem; 2005 Dec; 280(49):40699-706. PubMed ID: 16210318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene.
    Constant P; Perez E; Malaga W; Lanéelle MA; Saurel O; Daffé M; Guilhot C
    J Biol Chem; 2002 Oct; 277(41):38148-58. PubMed ID: 12138124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of tesA reduces cell wall lipid production and increases drug susceptibility in mycobacteria.
    Chavadi SS; Edupuganti UR; Vergnolle O; Fatima I; Singh SM; Soll CE; Quadri LE
    J Biol Chem; 2011 Jul; 286(28):24616-25. PubMed ID: 21592957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis.
    Léger M; Gavalda S; Guillet V; van der Rest B; Slama N; Montrozier H; Mourey L; Quémard A; Daffé M; Marrakchi H
    Chem Biol; 2009 May; 16(5):510-9. PubMed ID: 19477415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and Structural Characterization of TesA, a Major Thioesterase Required for Outer-Envelope Lipid Biosynthesis in Mycobacterium tuberculosis.
    Nguyen PC; Nguyen VS; Martin BP; Fourquet P; Camoin L; Spilling CD; Cavalier JF; Cambillau C; Canaan S
    J Mol Biol; 2018 Dec; 430(24):5120-5136. PubMed ID: 30292819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pleiotropic consequences of gene knockouts in the phthiocerol dimycocerosate and phenolic glycolipid biosynthetic gene cluster of the opportunistic human pathogen Mycobacterium marinum.
    Mohandas P; Budell WC; Mueller E; Au A; Bythrow GV; Quadri LE
    FEMS Microbiol Lett; 2016 Mar; 363(5):fnw016. PubMed ID: 26818253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of cytokine release by mycobacterium tuberculosis phenolic glycolipid analogues.
    Elsaidi HR; Lowary TL
    Chembiochem; 2014 May; 15(8):1176-82. PubMed ID: 24797221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dimycocerosate ester polyketide virulence factors of mycobacteria.
    Onwueme KC; Vos CJ; Zurita J; Ferreras JA; Quadri LE
    Prog Lipid Res; 2005 Sep; 44(5):259-302. PubMed ID: 16115688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mycobacterial phenolic glycolipids with a simplified lipid aglycone modulate cytokine levels through Toll-like receptor 2.
    Elsaidi HR; Barreda DR; Cairo CW; Lowary TL
    Chembiochem; 2013 Nov; 14(16):2153-9. PubMed ID: 24115598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Emergence of Phenolic Glycans as Virulence Factors in Mycobacterium tuberculosis.
    Barnes DD; Lundahl MLE; Lavelle EC; Scanlan EM
    ACS Chem Biol; 2017 Aug; 12(8):1969-1979. PubMed ID: 28692249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Playing hide-and-seek with host macrophages through the use of mycobacterial cell envelope phthiocerol dimycocerosates and phenolic glycolipids.
    Arbues A; Lugo-Villarino G; Neyrolles O; Guilhot C; Astarie-Dequeker C
    Front Cell Infect Microbiol; 2014; 4():173. PubMed ID: 25538905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mycobacterial acyltransferase PapA5 is required for biosynthesis of cell wall-associated phenolic glycolipids.
    Chavadi SS; Onwueme KC; Edupuganti UR; Jerome J; Chatterjee D; Soll CE; Quadri LEN
    Microbiology (Reading); 2012 May; 158(Pt 5):1379-1387. PubMed ID: 22361940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.